Tournal of Engineering and Applied Sciences 14 (10): 3482-3491, 2019

ISSN: 1816-949%
© Medwell Journals, 2019

Applving a Mathematical Approach to Interpreting the Results of
Testing Software and Hardware Data Security Tools
During the Verification Process

Andrey M. Kanner and Tatiana M. Kanner
National Research Nuclear University (MEPhI), 31 Kashirskoe Highway, 115409 Moscow, Russia

Abstract: The study is devoted to the 1ssues of applying existent mathematical apparatus from optimization and
decision making theories for verification of software and hardware Data Security Tools (DST). The study
contains an algorithm which can be used to verify such DST and which presupposes formal assessment of
criticality of the errors found during testing in the security functions of such security tools and algorithms used
to calculate the total error criticality before the DST 1s mtegrated into an information system. The study also
describes software implementation of the proposed verification algorithm which represents a decision support
system making it possible to automatically evaluate criticality of the errors found in the security tools.
Presented software implementation takes into account not only criticality of the errors and their number but also
criticality of the secunity functions in which such errors were detected during testing of the software and
hardware DST. In case of taking mto account the criticality of the security functions of DST the new level of
individual critena is added to the hierarchical structure of the decision making task for which criteria with errors
will be considered as embedded local criteria.

Key words: Software and hardware DST venfication, optimization and decision making theories, AHP, SAW,

verification algorithm of software and hardware DST, program “verifier of software and hardware
DST”, verification of access control subsystemn

INTRODUCTION

Implementation of security functions in software and
hardware Data Security Tools (DST) includes the
following items (Kanner, 201 4):

¢ Design (including establishing requirements for the
DST security functions)

»  Direct development of software and hardware
components of the DST (including its internal
software) implementing its security functions

¢ Testing of the above components

¢ Verification based on the test results

¢ Correction of errors found during testing

¢  Finalization, that is preparation of the DST for release
which consists of fixing versions of internal and
external DST Software, describing measures to
compensate the errors left based on the results of the
DST verification, describing features of the DST
functioning, preparing the necessary documentation,
etc.

¢ Release of the DST

The design phase is associated with the development
of requirements to the security functions of the software

and hardware DST. Requirements to a specific DST are
formed based on the end user’s tasks, usmg the
requirements of data protection regulatory authorities to
the class of data protection tools, to which it belongs.
After that, the software and hardware components of the
DST are developed which implement the required security
functions. Regardless of the type of the software and
hardware security tool (Karme, 2016a), prior to finalization
and release, its security functions shall be checlked for
compliance with the requirements. The compliance is
checked not only at the moment of first release of the DST
but also at the moment of subsequent updates of its
versions. To do this, the security functions of the
software and hardware DST are tested and on the basis of
such tests the DST 1s verified including classification of
errors and features found during testing and a decision is
made about success of the testing or a need to correct
such errors (Kanner, 2014). Thus, all the above stages,
except for the first one have to be repeated several times
during the life cycle of the software and hardware DST.
However, the most attention shall be paid to verification
as a fundamental stage on which the release of the
software and hardware DST depends.

Corresponding Author: Andrey M. Kanner, National Research Nuclear University (MEPhI), 31 Kashirskoe Highway,

115409 Moscow, Russia

3482



J. Eng. Applied Sci., 14 (10): 3482-3491, 2019

In general terms, verification means a confirmation
that the manufactured product complies with the
requirements imposed thereon (Kulyamin, 2008). The
decision on the results of verification 1s taken on the basis
of a comprehensive testing of the software and hardware
DST because this 1s testing that leads to identification of
all errors and shortcomings in its functioning, concerning
both the ease of use and malfunction and analysis of the
results allows to conclude that the security functions of
the DST being tested comrespond to the stated
requirements. Thus, the test results are a basis for the
verification process and verification results can lead to
the need of a new test that is, these two processes
influence each other.

The sequence of actions when testing and verifying
the DST is as follows (Kammer and Sultanahmedov,
2014):

Testing:

* Identifying incorrect behavior of the DST which
demonstrate presence of errors (including in the
security functions)

+  Recording the manifestation of errors

*  Localization of the errors marifestations-search for
other manifestations and relationships

*  Analysis of localized errors manifestations

¢+ Recording errors and features

Verification:

»  Classification of errors and features: establishing the
type, the compensation possibility, the degree of
criticality

¢+ Making a decision on the results of verification and
on the possibility of finalizing the DST or returning
for revision with subsequent retesting

In the process of testing software and hardware DPT,
Programs and Test Methods (PTM) are used which
contain specific sequences of actions and descriptions of
expected results, taking mto account the peculiarities of
functioning of a specific DST. The PTM are developed in
such a way as to cover all the product functionality and
to get the most complete picture of its performance. The
object being tested can be m different imitial conditions
(different operating systems, different versions of
hardware components, etc.) which are nput data for
testing. Testing using the PTM is performed separately
for each such set of conditions. On the basis of each test
cycle performed, a table of results is compiled containing
a list of all identified errors. After that, the tester conducts
localization of errors by examining their identified
manifestations and analyzing possible relationships with
previously encountered incorrect product behavior, if

any. Based on the data received from the tester, the
developer establishes the error and informs the tester
what functions the detected error may affect. Tn its turn,
the tester checks whether this error affects the specified
functions of the product and then compiles the final
list of the found errors and features (Kanner and
Sultanahmedov, 2014).

Based on the lList of the found errors and features, it
is necessary to perform their classification including
determination of the emror type, the possibility of its
compensation as well as the degree of its criticality
(Kamner and Sultanahmedov, 2014). As a result of all the
testing cycles on different sets of mput data, it is
necessary to create a final verification table of the
software and hardware DST which is used to analyze
performance of the product as a whole and to decide on
successful completion of testing and verification.

Some errors found during the testing process can be
corrected quickly enough before the wverification is
completed. Taking into account that each correction made
to one of the modules of the software or hardware
component of the DST may entail a change in the
operation of other modules, it is necessary to retest the
corrected product using all the PTM. Thus, the constant
change of the tested and verified object can lead to
confusion i the results and to the so-called “endless
testing” which in its turn will lead to a delay in the release
of the DST. To prevent entry mto the infinite testing
cycle, you shall either decide to make corrections to the
next version and complete the verification of the current
version with a verdict on its release or stop testing and
verifying the current version and immediately start testing
the new one which shall be the most updated current
version of the software and hardware DST and its security
functions.

For the DST including hardware and software ones,
the verification process has some peculiarities in terms of
analyzing the 1mpact of emors detected during
implementation of the security functions on the system
security 1in which such tools are used (Kammer and
Sultanahmedov, 2014). Such peculiarities shall be taken
into account mn the program and test methods, testing of
the DST security functions cannot be considered
complete without them.

The errors identified during testing of the DST
security functions should be attributed to one of the
following types: minor typos and errors (for example, a
typo mn the displayed message or an incorrect name of any
function) that do not affect the correctness of the security
functions, errors leading to inoperability of one or more of
the DST security functions, errors leading to inoperability
or damage to the system security in which the DST is
used.

3483



J. Eng. Applied Sci., 14 (10): 3482-3491, 2019

Such types of errors are unequal from the point of
view of the DST operation, therefore, a certain gradation
of all the found errors is needed in terms of their impact on
the performance of the main task-protection of mformation
resources and security.

The scale of error criticality 13 dependent and as a
rule is intended for internal use by the company
producing the specific data protection tool. At the same
time, the correctness of assessing the error criticality is a
fundamental factor n deciding on the possibility of
finalizing and issuing the DST.

Let us consider an example of the criticality scale of
the errors found when testing the security functions of
the software and hardware DST. The errors can be
divided into several types (Kanner and Sultanahmedov,
2014).

Interface errors: These include faults in the convenience
of the user interface, correctness of the display of all its
elements, typos in system messages and the like. Such
errors do not affect the performance of the DST security
functions, functionality and security of the system in
which the DST is applied. Their correction is necessary to
ensure comfortable work of the end user. The presence of
such defects is not dangerous for the protected system
and they are assigned a mmimum level of criticality.

Errors that limit the DST functionality without damaging
its security functions: Such type of errors imposes some
restricions on the DST functionality while not
endangering the protected system. In this case, either
unproperly functioning DST capabilities are not directly
responsible for the security of the protected system
or the lack of these functions can be compensated by
applying  other means and measures without
compromising the security level.

The errors related to compromising of the DST security
features: This type includes errors that can affect the
system or data security due to a damage to the DST
security features which creates prerequisites for
successful implementation of an attack using the resulting
vulnerability. They are the most critical and presence of
even one error of this type can lead to verification
resulting in prohibition of product finalization and release,
except m cases where such damage can be compensated
by additional means and measures for example by
adjusting the OS.

Tt shall be noted that the tester is not always able to
determine the emror type based on the detected
manifestations thereof without participation of the
developer. Therefore, involvement of the developer in the
analysis of the detected error manifestations is a

prerequisite without which it is impossible to accurately
eliminate the errors and classify them correctly. For
example, if an error found by the tester is that when
checking the Digital Signature (DS) of a file that has been
modified after it has been written, a message on the DS
correctness appears, then this may be a second type error
when the function of generating verification results
messages works incorrectly. However, such a
manifestation may also be caused by the situation when
the function of checking the DS does not work correctly.
In this case, it will already be a third type error which just
may lead to a breach of the system security and a
possibility of any attack from a potential intruder. In the
described case, the tester alone will not be able to figure
out exactly the essence of the arising error manifestation
and the developer shall be involved to analyze and
eliminate it.

After classifying the errors and features as well as
analyzing the results obtained, it is necessary to
summarize whether all the requirements for the DST
security functions are met or there are critical errors that
lead to their damage (even taking wmto account
compensatory measures) and do not allow to make a
decision about the beginmng of the finalization stage. If
there are no such errors, then, a decision 13 made to
release the DST, otherwise, the DST shall be
reviewed, re-tested and re-verified.

It should be noted that the decision on the DST
release (or the prohibition of the release) on the basis of
the testing results 13 generally taken quite nformally for
example, only on the basis of presence/absence of critical
DST emrors. Such an approach cannot guarantee a
qualitative assessment of the DST performance and its
security functions, therefore, it is necessary to use other
methods that allow a more accurate assessment to be
made to make the final decision.

MATERIALS AND METHODS

To decide on the possibility of releasing the DST, 1t
is proposed to use the methods mentioned in optimization
and decision making theories m particular Analytic
Hierarchy Process, AHP in which this task can be
considered as a task of making a decision in the context of
absolute certainty (presence of a certain type of errors
leads to a “deterioration” of the DST to some known
extent). For example, to solve this task you can use a well-
known smmple chowce algonthm (Simple Additve
Weighting or SAW, known as weighted sum method)
based on the methods of Saaty (1977, 1980), Cogger and
Yu (1985), Takeda et al. (1987), Chernorutsky (2001) and
Kim and Weck (2006), evaluating the DST (hereinafter
referred to as the “alternatives”) according to the

3484



J. Eng. Applied Sci., 14 (10): 3482-3491, 2019

evaluation criteria, taking into account the “importance”
of each of them while calculating a certan amount the
value of the generalized evaluation criterion.

The task can be solved with the help of such a
mathematical apparatus due to the fact that (Kanner,
2018).

The described task is a task of a multi-criteria
decision making in the context of certamty with a
small number of criteria and alternatives.

You may use both qualitative (presence/absence of
an error) and quantitative characteristics (number of errors
of wvarious types) as evaluation criteria that 1s the
objective of the task can be changed without changing
the apparatus used, if necessary.

When recording errors during the testing, you may
always 1dentify the necessary additional nformation (the
number of errors, the degree of their importance and so
on).

It is important to get an unambiguous answer for
testing and verification if this 1s possible to release the
DST (for example, knowing some acceptable margin of
error criticality in the DST) and if such methods are most
suitable in this case while others can yield many optimal
answers, the so-called Pareto set (Lin, 1976,
Chernorutsky, 2001; Kim and Weck, 2006).

We apply the simple choice algorithm based on the
methods of Saaty (1977, 1980) and Cogger and Yu (1985)
to solve the task of making a decision about the
possibility of releasing the DST. This algorithm assumes
that we shall first construct a weight vector (weighting
coefficients) for the evaluation criteria (in our case, these
are the criteria f-f, presence of errors of three levels of
criticality):

o= (0, o,, o)

having the property of normalization:
Yo =1i=1273

To do this, according to a predetermined criticality

scale, the relationship of pairwise superiority of
evaluation criteria between each other shall be first
determined:

o, =0/,

O = O /Oy

0,y = O,/ Oy

Thus, a transition from qualitative characteristics of
the criteria to quantitative ones is made and then the
values of weighting coefficients ¢, and «; are determined
by solving a linear equation obtained from the
normalization condition.

After that, the values of the individual optimality
criteria corresponding to the alternatives are calculated in
the same way:

a® =(falt), .., f,(alt,)

a® = (f,(alt,), ..., f,{alt, )
o® = (f,qlt,), ..., f,(alt, )

where, alt,, ..., alt, keN are the evaluated alternatives
(DST). That is, on the basis of qualitative and quantitative
characteristics of the alternatives, a transition is made to
the quantitative relationship:

|| 1
o, = oo,

1 _ 1 1
a’k—lk - a’k—lfa'k
3oz 2

o, = oo,

1 gl z
a’kflk =a kflf(1 k

A 3
o, = ol o,

3 3 3
a k-1k o kfl’/a k

Then, taking into account the normalization condition
of vectars ¢™-g™, the system of linear equations is solved
and the values are determined the weighting coefficients
of significance of one or another type of errors in a
particular alternative:

f, (alt))
f, (alt, )
f.(alt,)

f,(alt, )
f,(alt, )
f,(alt,)

To assess the criticality of errors in alternatives, it is
necessary to calculate and compare the values of the
generalized criteria using the following linear convolution
formula (Adamcsel, 2008):

Jalt) =Y afalt),j=1.2,3,i=1....k ke N

A higher value of the generalized criterion
corresponds to presence of larger critical errors in one or
another alternative, so, the task 1s reduced to mimmizing
the value of the generalized criterion

Using the described mathematical apparatus, it 1s
possible to compare different versions of the same DST to
each other or use a specific version as a standard and
release the DST only if 1t possesses mdicators which are

3485



J. Eng. Applied Sci., 14 (10): 3482-3491, 2019

close to or exceed those of the standard one (however,
this evaluation may always be inaccurate due to presence
of the DST errors not detected during testing). In
addition, 1t 1s possible to introduce a new level of the
evaluation criteria hierarchy-criticality of the security
functions themselves in which errors of one or another
criticality revealed, the
mathematical apparatus and similar calculations can be
used to solve such a task.

Based on the above, it is possible to suggest an
algorithm for verifymng software and hardware DST
mnplementing  security  functions, based on the
classification of detected errors, analysis of their criticality
and impact on the system security or data which involves
the following steps:

Formation of an error criticality scale for the hardware
and software DST being verified (for example in
accordance with the above proposed division of errors
mto types: insigmficant and not affecting the correctness
of performing security functions, those leading to
inoperability of one or several security functions, those
leading to inoperability or damage to the system security
i which the DST is used).

Identification and fixation of computable manual or
automatic checks of security functions (Kanner, 201 6a)
whose completion result is negative.

level have been former

Tdentification and fixation of the remaining manual or
automatic checks of security functions of those that are
not computable as a result of a negative completion of the
checks under point 2.

Classification of the errors resulting from negative
completion of manual and automatic checks under pomts
2 and 3 in accordance with the selected error criticality
scale under point 1.

Deciding on the possibility of successful test
completion or a need to correct the identified errors using
the provisions of the optimization and decision making
theory (for example, a simple choice algorithm based on
the methods of Saaty, Cogger and Yu) or on the basis of
other evaluations (Saaty, 1977, 1980; Cogger and Yu,
1985; Takeda et al., 1987, Chernorutsky, 2001 ; Kim and
Weck, 2006).

The testing including points 1-5 shall be carried out
for a fixed version of the software and hardware DST
(software and hardware components) and i case of
making any changes in the DST or correction of the
detected errors before completion of the verification
process, you shall start again from testing and then go to
point 2.

The block diagram of the proposed verification
algorithm is shown in Fig. 1.

|">C
> Testing of the DST 1

Start

)

From an error criticality
scale for the verified DST

Yes

Is there an error
criticality scale?

v

Use a simple choice algorithm to
—p] evaluate criticality of the errors

Identify and record computable securitv
function shecks with negative results

of various types

y

}

completion of the computable checks

Identify and record those of the remaining security function
checks, that are not computable as a result of negative

Is it necessary to
correct errors according

{

to the results of the

Classify the errors resulting from negative completion
of checks in accordance with the criticality scale

algorithm used?

Yes

C )

Fig. 1. Block diagram of the verification algorithm for the software and hardware DST implementing security fimctions
which is based on classification of the detected errors, analysis of their criticality level and impact on the system

and data security

3486



J. Eng. Applied Sci., 14 (10): 3482-3491, 2019

The proposed algorithm has a wide purpose and is
applicable not only to all types of software and hardware
DST (Kanner, 2016a, b) but also to software security
tools. However, this algonthm 1s wrrelevant for software or
any other software and hardware tools as it considers
error criticality of security functions which are absent in
any other tools that are not intended to protect
information. This algorithm allows to evaluate the
criticality of errors that occur when performing manual
and automatic checks of criteria-computable security
functions (Kamner, 2016a, b) that 1s in cases where such
checks are computable but the result of ther completion
is negative, analyze the results obtained and the impact of
errors on the system security and based thereon decide
on successful completion of testing or on return of the
DST for revision. Before applying the proposed
verification algorithm, 1t is necessary to test the software
and hardware DST for example, on different hardware
platforms using virtualization tools and the testing
algorithm proposed in (Kanner, 2015, 2017) and/or
auxiliary testing tools and additional hardware equipment.

The advantage of this algorithm 1s that in contrast to
the probabilistic approach to risk management and
reliability evaluation of mformation systems (Drobotun,
2009) adopted in well-known papers and regulatory
documents, this algorithm offers a deterministic
approach that is most suitable for verifying software
and software-hardware DST. Verification of the DST shall
be carried out immediately prior to their mtegration mto
the Information System (IS) and not the probability of
the IS failure or its frequency shall be determined but
expediency of correcting specific errors that have already
been identified and may appear during the system
operation and affect its security immediately prior to
application of security tools. This approach 13 a
preventive measure to ensure reliability and eliminates
deterioration of the IS security even prior to integration of
the DST as well as to organize regression testing of the
security tools themselves.

The proposed algorithm for verifying the software
and hardware DST allows a more formal evaluation of the
error criticality that occur when implementing security
functions that are computable by criteria found during
checks (Kanner, 2016a) to analyze the results obtained
and the extent to which the errors affect the system
security. Moreover, on the basis of the analysis carried
out using the provisions of the optimization and decision-
making theory, a decision 13 made on successful
completion of testing or the need to correct the errors
found.

RESULTS AND DISCUSSION

On the basis of the proposed algorithm for verifying
the software and hardware DST, software has been

developed that provides a possibility to automatically
solve the task of assessing criticality of the errors
detected during error testing in security functions the
program called “Verifier of software and hardware
DST™.

The results of testing the security functions of the
software and hardware DST in a predefined format shall
serve as an input for the verification program. Upon
receipt of the input data, the program “Verifier of software
and hardware DST™ allows to evaluate criticality of the
errors detected during testing and the degree of their
influence on the mformation system security. In this case,
the input data can be set either manually (determining
criticality of all the detected errors) or the results of the
testing of the DST security functions described in
(Kammner, 2017) shall be transmit as the input data. In the
latter case, criticality of the emors 1s determined
automatically and set m the results of the testing
programs, depending on the security functions checks
which ended with a negative result.

Evaluation objects can include various versions of
the same DST tested in various operating systems and
with different versions of the hardware component. As a
result of this, it becomes possible to compare the tested
software and hardware DST both with its previous
versions in order to conduct regression testing and
with some abstract “reference” version in which no
errors were detected in order to assess the degree of
influence of the errors found on the quality of the security
tool.

In this case, two operation modes of the verification
program are assumed: basic one the DST is evaluated
only on the basis of the detected errors of different levels
of criticality, advanced one the DST 1s also evaluated on
the basis of criticality of the errors but taking into account
the criticality level of the security functions in which they
were identified.

The basic mode of operation can be used for any
software and hardware DST while the advanced mode can
be used for those for which testing programs are
developed by Kanner (2017) means of cryptographic data
protection and access control subsystems of various
manufacturers. Both operation modes allow us to rank the
evaluation objects according to the degree of influence
the detected errors have on the quality of the software
and hardware DST and moreover in addition to assessing
the criticality of the detected errors, to take into account
their number. The application of one or another method of
evaluation (only based on criticality of the errors or on
both criticality and quantity) depends on the specific
objectives of verification.

Suppose that 1t 15 necessary to verify the next version
of the software and hardware DST (for example, access
control subsystem V1.4) based on the errors found during
testing. For comparison, the verification program should

3487



J. Eng. Applied Sci., 14 (10): 3482-3491, 2019

CEvalualion of the error criticality in the DST security functions)

/

v \

( Influencing the IS security ) ( Damaging operation o:

Minor errors)

f the security functions )

Alternatives

GccordX V1.0

@ccordX \% I.D C’\ccordX v la CAccordX A% 19

AccordX V ID\CAccordX A\ 1,9

Fig. 2: Visualization of the lierarchical structure of the task comnected with evaluation of the DST error criticality:

purpose individual criteria and alternatives

use the results of testing previous versions (for example,
V1.0, 1.1, 1.2and 1.3) and a certain “reference” version
of the DST. At the same time, suppose that while testing
the specified DST versions, the following number of
critical errors affecting the IS protection, errors in security
functions and non-critical errors were recorded-you
need to specify them as a vector whose element values
correspond to the number of the listed types of errors,
respectively, V1.0-(1, 3, 1), V1.1-(2,2, 1),V 1.2<0, 5, 8);
V 1.3-(0,2,5), V1.4-(0,1,10).

The program “verifier for software and hardware
DST” the proposed mathematical apparatus
proposed in the optimization and decision-making theory.
This solves the task of evaluating criticality of the errors
detected in security functions of the software and
hardware DST and ranking alternatives (DST versions)
according to the evaluation criteria. The herarchical
structure of this task 1s shown on Fig. 2 and consists of a
purpose mdividual criteria (presence of errors of three
criticality levels) and the alternatives being evaluated.

In the basic operation mode, the program “verifier for
software and hardware DST” takes into account only
criticality of the errors detected during testing of the DST
security functions and their number. At the same time, to
ensure proper operation of this program, it 1s necessary to
set the above quantitative data on the detected errors (the
testing results) and also to determine the criticality scale
describing the “importance” (superiority) relationship of
one criterion m relation to the other. In accordance with
the Saaty’s scale (Saaty, 1980; Chemorutsky, 2001), it
would be advisable to set the following values as a
result of a pairwise comparison of superiority of the errors
of the accepted criticality levels: critical errors compared
to errors m the securnity functions -3 (medium superiority),
critical errors compared to minor ones -9 (absolute
superiority), errors in the security functions in comparison
with non-critical ones -7 (strong superiority). Taking into

uses

account the given superiority values, the verification
program should automatically calculate the numerical
values of the weighting factors for the evaluation criteria.
Tt is important to note that the criticality scale should be
determined only once and can be used without further
changes to solve new similar tasks of evaluating criticality
of the errors m software and hardware DST.

Based on the input data, the verification program
allows you to automatically evaluate criticality of the
errors in the alternatives identified during testing. When
using the proposed mathematical apparatus, quantitative
indicators of the detected errors are also taken into
account.

In the advanced mode of operation, the program
“verifier of software and hardware DST” takes into
account not only criticality of the errors and their number
but also criticality of the security functions in which such
errors were detected during testing of the security
functions of the software and hardware DST. In this
mode, a new level of individual criteria 1s added to the
hierarchical structure of the task being solved (Fig. 3),
characterizing the tested DST security functions for which
criteria with errors will be considered as embedded local
criteria (for each criterion of a higher level of hierarchy). In
such conditions, for example, for the access control
subsystem, it 13 advisable to consider the following
security functions that will represent the criteria of a
higher level: user identification and authentication, access
control, integrity control, creation of an isolated software
environment for users to ensure that the current security
policy 15 not violated (Kanner, 2016b), other mmor
security functions (clearing of the random access memory
and residual information, printing control, etc.).

Let us consider the use of the developed program
“verifier of software and hardware DST™ to verify one of
the selected DST the Access Control Subsystem DST
Protecting from Unauthorized Access (PUA) “Accord-X”

3488



J. Eng. Applied Sci., 14 (10): 3482-3491, 2019

Evaluation of the error criticality
in the DST security functions

(Integrit}) C ISWT Minor fuuctions)

AccordX ( AccordX ' AccordX
V12 V1.3 V14

Fig. 3: Visualization of the hierarchical structure of the task connected with evaluation of the DST error criticality with
respect to criticality of security functions (L, M, S denote the level of criticality of errors from major to minor)

Verifier of sw/hw DST

Testing Output Wisualize

Analyze

Evaluation of the errer el ticality In the DST security funclisns
L. Influendcing the 15 security

2. Damaging operation af the security functions

focordX. AocordX AccordX AccordX AccordX reference

Inportance vl wl.l w12 wi3 wild Wi
1000% 30S5% 34468 148% a.r% % 1%
GA.9% 2E4%  295% 29% 275 2.9% 29%
9.5% B5% 4.7% 10.2% 4.7% 2EX Qi
5.7% LEE 5 0a% 1.7% 1.1% 20 1%

3. Minor errors

Fig. 4: Results of verifying Accord-X based on the errors found during testing (basic mode)

(Kammer and Ukhlinov, 2012; Kanner, 2014) Versions
-V 1.0,1.1,1. 2, 1.3 and 1.4. The result of verifying the
specified versions 1s shown in Fig. 4 (the percentage 1is
indicated instead of the values of the weighting
coefficients for convenience).

It can be seen from the obtained results that
Accord-X version V 1.4 has the value of the generalized
criterion that is the closest to the “reference”™ version as
well as the smallest criticality of the detected errors as
compared to all other versions. This indicates a positive
trend of regression testing-compared to previous
versions, the number of DST errors has increased while
their overall criticality has decreased. Thus, verification of
Accord-X Version V 1.4 can be completed and the
wdentified errors can be taken mto account when
developing the next version of the DST. Moreover, the
verification results in Fig. 4 show that Accord-X Version
V 1.1 has the greatest criticality of the detected errors due
to a greater number of errors affecting the IS or data
security. Therefore, verification of this version was
interrupted, although, uncompleted and the DST was sent
for revision. Version V 1.2 was developed as a result of
the revision in which all the most critical errors were
corrected but several new errors of a lower criticality level
were found. However, due to the fact that the overall

criticality of all the detected errors was reduced mncluding
in comparison with Version V 1.0, the verification of
Accord-X Version V 1.2 was successfully completed.

Tt is necessary to clarify that the values of the
generalized and individual criteria (for specific types of
errors) for the “reference™ version of the DST in Fig. 4
have a non-zero value due to the use of the mathematical
apparatus and the scale of superiority adopted m 1t to
solve the task, even taking into account the zero values of
all evaluation criteria. The given criteria values for the
“reference” version should be interpreted as the mimmum
acceptable values that cannot be potentially exceeded in
any real version of the software and hardware DST.

At the same time, errors in user identification and
authentication as well as in creating an 1solated software
environment for users, will have the highest priority, the
priority of the errors in access control and integrity
control 18 lower and the priority of emrors m other
functions (cleaning of the random access memory and
residual information, printing control, etc.) 1s mimmal. The
previously obtained “importance” (superiority) relations
between the types of errors themselves (1dentified in the
corresponding security function) as well as the criticality
scale can be used without change. Tn accordance with this

3489



J. Eng. Applied Sci., 14 (10): 3482-3491, 2019

Accord® AccordX AccordX AccordX AccordX reference

|rportance w10 %11 vl wl.3 wild wal X
Evaluation of the error criticality in the DST secwrity functions AN 15.0% 15.25% 138% 12.5% 12.6% 115%
1. kdfauth A% 3.3% 7% 3% 31.3% A7 33%
2 aecess ctrf 17.3% 2.8% 2.B% 34% 2.8% 2E% 2.8%
3 integrity 168% 4.8% 2.2% 3.0% 2.2% 2.7% 3%
4 Bolated enwvironment 1E4% 3.7% A.2% 2.7, 2.7% 3.3% 2.7,
5 minor functicns T.5%. 5% A.7% 14% 1.4% 1,5% 5%

Fig. 5: Results of verifying Accord-X based on the errors of various criticality levels of the security functions in which

they were 1dentified

in the advanced operation mode of the program “verifier
of software and hardware DST”, the results shown mn
Fig. 5 were obtained for the same input data.

In this operation mode the results of Accord-X
verification are different: the overall criticality of the errors
inV 1.0and 1.1 is not so different due to the fact that all
critical errors in V 1.1 were detected in the least important
security function. It i1s possible that with such results,
verification of this version of Accord-X could be
completed because as compared with Version V 1.0, the
critical errors in a more significant security function were
elimmated.

Version V 1.3 has a lower overall error criticality as
compared to V 1.4 due to the fact that the latter revealed
a lot of minor errors in two most significant security
functions. It might be better to send this version of the
DST for revision.

CONCLUSION

The study proposes a verification algorithm based on
the results of testing software and hardware DST and
considering criticality of the errors not m terms of
abnormal operation of the test object but in terms of the
possibility of damaging the IS or data security mn case of
incorrect operation of the security functions. A new level
of evaluation criteria hierarchy 1s introduced - criticality of
the security functions themselves. Tn this case, the
criticality of each emror takes mto account the
interdependence of the computability of the security
funetions from each other and 1s made up of the totality of
criticality levels of the error itself and the security
function m which it was detected. This algorithm
implements formal evaluation of criticality of the errors
detected durmng testing in security functions of the
software and hardware DST and algorithms for calculating
the overall error criticality value before integration of the
security tools in the information system and used to
compare both, different versions as a part of regression

testing and those with an abstract “reference” version in
order to determine the degree of influence of the detected
errors on the system or data security and to make a
decision on the possibility to release a specific version of
the DST.

The study also describes the program “verifier of
software and hardware DST” developed on the basis of
the proposed algorithm for verifying software and
hardware DST which makes it possible to automatically
evaluate criticality of the errors detected m the security
functions of software and hardware DST after using the
corresponding testing programs. At the same time, the
proposed program “verifier of software and hardware
DST” can analyze both the results of testing different
versions of the DST between themselves as a part of
regression testing and of comparing them with an abstract
“reference” version to evaluate the degree of influence of
the detected errors on the security quality of tlus or
another version (or when testing them m certain
conditions).

In addition, to take nto account various verification
objectives, the developed program provides for two
operation modes, the results of which may differ
depending on “importance” of the security functions in
which errors of different criticality levels were detected.
Due to dependence of the advanced operation mode on
the hardware and software DST m terms of the
implemented security functions and their significance in
the verification framework, it is possible to apply it to
security tools for which testing programs have already
been developed. The basic mode of operation can be
applied without changes with respect to any software and
hardware or only software DST.

REFERENCES

Adamcsek, E., 2008. The analytic hierarchy process and
its generalizations. Master Thesis, Eotvos Lorand
University, Budapest, Hungary.

3490



J. Eng. Applied Sci., 14 (10): 3482-3491, 2019

Chemorutsky, 1.G., 2001. Methods of Optimization and
Decision Making. LAN Publishing, Samt Petersburg,
Russia.

Cogger, K.O. and P.L. Yu, 1985. Eigenweight vectors and
least-distance approximation for revealed preference
in pairwise welght ratios. I. Optim. Theor. Appl., 46:
483-491.

Drobotun, E.B., 2009, [Criticality of errors in software and
analysis of ther consequences (mn Russiamn)].
Fundam. Res., 1: 73-74.

Kanner, AM. and L M. Ukhlinov, 2012, [Access control
in GNU/Linux (in Russian)]. Inf. Secur. Questions, 1:
35-38.

Kanner, A M., 2014. [Lmux: Process life cycle and
access control (in Russian)]. Inf. Secur. Questions, 1:
37-40.

Kanner, AM., 2016b. Correctness of data security tools
for protection against unauthorized access and their
mteraction in GNU/Linux. Global J. Pure Appl. Math,,
12: 2479-2501.

Kanner, T M. and K h.S. Sultanahmedov, 2014. [Features
of verification of data security tools (In Russian)].
Inf. Secur. Questions, 4: 55-57.

Kanner, T.M., 2015. [Features of using virtualization for
testing software and hardware data security tools
(In Russian)]. Inf. Secur., 18: 416-419.

Kanner, T.M., 2016a. Applicability of software testing
methods to software and hardware data security
tools. Global J. Pure Appl. Math,, 12: 167-190.

Kanner, TM., 2017. [The effectiveness of using
supporting tools for testing software and hardware
DST (In Russian)]. Inf. Secur. Questions, 1: 9-13.

Kanner, T.M., 2018. [Adaptation of existing verification
methods for software and hardware DST (In
Russian)]. Inf. Secur. Questions, 1: 13-19.

Kim,1.Y. and O.1.. De Weck, 2006. Adaptive weighted sum
method for multiobjective optimizationt A new
method for Pareto front generation Struct.
Multidiscip. Optim., 31: 105-116.

Kulyamin, V.V., 2008. Software Verification Methods.
Institute for System Programming of the RAS,
Moscow, Russia, (In Russian).

Lin, I., 1976. Multiple-objective problems: Pareto-optimal
solutions by method of proper equality constraints.
IEEE. Trans. Autom. Control, 21: 641-650.

Saaty, T.L., 1977. A scaling method for priorities in
hierarchical structures. J. Math. Psychol,, 15: 234-281.

Saaty, T.L., 1980. The Analytical Hierarchy Process. 2nd
Edn.,, McGraw-Hill, New York, TUSA.
[SBN:9780070543713, Pages: 287.

Takeda, E., K.O. Cogger and P.I.. Yu, 1987. Estimating
criterion weights using eigenvectors: A comparative
study. Eur. I. Oper. Res., 29: 360-360.

E

3491



	3482-3491 - Copy_Page_01
	3482-3491 - Copy_Page_02
	3482-3491 - Copy_Page_03
	3482-3491 - Copy_Page_04
	3482-3491 - Copy_Page_05
	3482-3491 - Copy_Page_06
	3482-3491 - Copy_Page_07
	3482-3491 - Copy_Page_08
	3482-3491 - Copy_Page_09
	3482-3491 - Copy_Page_10

