
Comprehensive Testing of Software
and Hardware Data Security Tools Using
Virtualization

A. V. Epishkina, A. M. Kanner and T. M. Kanner

Abstract The article considers the need to use modern virtualization tools in the
process of developing, assembling and testing software and hardware data security
tools. Such data security tools include hardware components that implement key
security functions, but also impede the use of number of testing tools. The use of
virtualization tools for software and hardware data security tools allows to perform
security checks, which are difficult to test on physical computing hardware, for exam-
ple: security functions that run independently of the operating system of computing
facility or before starting the user session. However, using virtualization tools may
degrade the “purity” of the testing process, so it is necessary to ensure that software
implementation of the hardware devices’ virtual connection interfaces and virtual
machine components comply with existing standards and specifications. Depending
on the connection interface of hardware components of data security tools, it is pos-
sible to use the built-in capabilities of virtualization tools or existing AMD IOMMU
and Intel Vt-d technologies to redirect these components to a virtual environment.

Keywords Testing of software and hardware data security tools · Virtualization
tools · Testing programs for data security tools for protection against unauthorized
access

A. V. Epishkina · A. M. Kanner (B) · T. M. Kanner
National Research Nuclear University MEPhI, Kashirskoe Highway, 31, 115409 Moscow, Russia
e-mail: kanner@mail.ru

A. V. Epishkina
e-mail: ann-arsky@yandex.ru

T. M. Kanner
e-mail: sheikot@mail.ru

© Springer Nature Switzerland AG 2020
S. Y. Misyurin et al. (eds.), Advanced Technologies in Robotics and Intelligent Systems,
Mechanisms and Machine Science 80, https://doi.org/10.1007/978-3-030-33491-8_9

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33491-8_9&domain=pdf
mailto:kanner@mail.ru
mailto:ann-arsky@yandex.ru
mailto:sheikot@mail.ru
https://doi.org/10.1007/978-3-030-33491-8_9


80 A. V. Epishkina et al.

1 Introduction

Modern virtualization tools greatly simplify the process of developing, assembling
and testing software and data security tools (DST), for example, allowing to do as
follows [1]:

• To emulate the most popular hardware platforms—x86, arm, ppc64, s390x, etc.;
• To emulate a large number of software platforms—various versions and bitness
of operating systems (OS) or other application software;

• To conduct load testing, i.e. to emulate a large number of users, processes,
connection sessions, etc.;

• To perform testing of functions that run independently of the OS, before the OS
is booted, or before the user session is started;

• To perform sequential testing on several computers—virtual machines (VM), with
succession of some hardware resources.

At the same time, an important difference between virtualization tools and, for
example, containerization tools during development and testing lies in the ability to
fully emulate hardware platforms, taking into account all their basic features, which
is absolutely necessary when developing system software and DST.

As compared to software DST, software-and-hardware DST include hardware
components made as an independent or connected physical device (for example,
with a USB or PCI interface). Such hardware components can perform key security
functions on the one hand, and prevent the use of certain tools that simplify the
process of development, assembly and testing, including virtualization tools, on the
other hand.

The main factors that do not allow to fully use certain virtualization tools for the
development, assembly and testing of software-and-hardware DST are as follows:

1. Inability to redirect all types of hardware components into a virtual environment;
2. Possibility of errors in the implementation of the virtualization tools themselves

(for example, in the tools used to redirect the required hardware devices), which
may be absent when using physical computers;

3. Dependence of some security functions on the characteristics of physical
computers, which cannot be emulated using virtualization tools;

4. Inconsistency of some virtualized entities (processor, BIOS/UEFI, interrupts,
etc.) with existing standards and specifications [2].

Thus, real physical computers shall be ideally used for software-and-hardware
DST,which complicates the development, assembly and testing processes, but allows
to sufficiently ensure accuracy of these processes [2]. However, virtualization tools
greatly simplify scalability, and also allow to perform a number of tests that cannot
be automated on physical computers. In this regard, it is necessary to find out which
modern virtualization tools (for example, VMware, Oracle and Parallels, as well as
those built into the operating system—Hyper-V, KVM, etc.) may be used in relation
to software-and-hardware DST, and under what conditions.



Comprehensive Testing of Software and Hardware Data Security … 81

2 Materials and Methods

When testing software-and-hardware DST, one shall at first take into account that
both software and hardware components can be in different states. In this regard, to be
able to compute [3] security function tests, it is necessary, first, to ensure reachability
of all these states, and, second, to implement all possible functions of transition from
one state to another. Therefore, upon completion of each test, if necessary, either
the DST is transferred to another state required for the next test, or the DST is
returned to the state in which this security tool was before the start of the current test
(initial/reference state). In terms of state reachability when using virtualization tools,
it is necessary to first consider the possibility of redirecting hardware components
of the DST to the VM.

When using virtualization tools, the least difficulties arise in relation to software-
and-hardware DST, which have amobile hardware component that implements secu-
rity functions that interact with the OS environment of the computer [1]. As a rule,
virtualization tools support redirection of such devices into theVM, and there are cor-
responding drivers to support virtual connection interfaces in theOS.Difficultiesmay
arise in the process of using virtualization tools for testing software-and-hardware
DST, whose security functions do not interact with the OS and are implemented as
a part of the computer, for example, those related to the possibility of initiating boot
using the DST or taking control before the VM OS is booted. However, there are
no such difficulties in those virtualization tools that use software implementations
of BIOS (and other components of the computer), which are similar to the hardware
ones and correspond to the specifications, but not interact directly with the hardware
of the physical computer. For example, KVM (Kernel-based Virtual Machine) uses
SeaBIOS that conforms to the specification [4, 5].

When using virtualization tools to test security functions implemented on the
basis of a stationary hardware component, it is necessary to redirect it to the virtu-
alization environment using the following technologies—AMD I/O Virtualization
Technology (AMD IOMMU) or Intel Virtualization Technology for Directed I/O
(Intel VT-d) [6, 7]. The basis of these technologies lies in the use of a special
input/output memory management unit (IOMMU), which allows various periph-
eral devices to be directly used in the VM through interruption mapping and direct
memory access (DMA) tables. The tools implementing security functions based on
a stationary hardware component include, for example, controllers with PCI/PCI-
express interface. For AMD IOMMU or Intel VT-d technologies to work correctly,
they shall be supported by a processor, a motherboard, a system/internal computer
software (BIOS or UEFI), and a computer OS, where the virtualization tool is used.
In the absence of such technologies in one of the above computer components, it
will be impossible to redirect the hardware component implementing the security
functions into the VM.



82 A. V. Epishkina et al.

Thus, when testing security functions of the software-and-hardware DST imple-
mented on the basis of a stationary hardware component (including those with the
PCI connection interface) using virtualization tools, it is necessary to use a spe-
cialized computer, in which all components support AMD IOMMU or Intel VT-d
technologies. To enable redirection of such devices into the VM, it is also necessary
to ensure support for such technologies in the OS. For example, in case of Linux and
KVM virtualization environment, in order to redirect devices to the VM using Intel
VT-d, the OS kernel with the following configuration parameters [1] shall be used:

• CONFIG_PCI_STUB—to provide the possibility to “detach” devices from OS
drivers and redirect them to the VM environment;

• CONFIG_INTEL_IOMMU—to enable support for Intel VT-d using DMA map-
ping tables (to translate all physical memory calls from the VM);

• CONFIG_IRQ_REMAP—to support the mapping of interruptions.

In the future, to redirect devices to the KVM virtualization environment, before
booting the VM one shall first detach the device from the OS driver, then attach the
device to the driver that will be used to redirect it to the virtualization environment
(pci_stub):

export BASE_ADDRESS="0000"
export PRODUCT_ID="03:00.0"
export VENDOR_ID="1795 0700"
modprobe pci_stub
echo "${VENDOR_ID}" > /sys/bus/pci/drivers/pci-stub/new_id
echo "${BASE_ADDRESS}:${PRODUCT_ID}" \ 

> /sys/bus/pci/devices/${BASE_ADDRESS}:${PRODUCT_ID}/driver/unbind
echo "${BASE_ADDRESS}:${PRODUCT_ID}"> /sys/bus/pci/drivers/pci-stub/bind

After that, the VMmay be booted using the device location on the bus as a param-
eter, for example: “-device pci-assign,host = 03:00.0,id = amdz0”, where 03:00.0
is the interface to which the PCI device is connected. The structure of complete
xml-description file for the virtual machine in libvirt with automatic redirection of
some device is presented below:



Comprehensive Testing of Software and Hardware Data Security … 83

<domain type='kvm' id='1'>
<name>VM_NAME</name>
<description>VM_DESCRIPTION</description>
<memory unit='KiB'>2000000</memory>
<os>

<type arch='VM_ARCH' machine='pc-1.3'>hvm</type>
</os>
<devices>

<emulator>/usr/bin/qemu-system-VM_ARCH</emulator>
...
<hostdev mode='subsystem' type='pci' managed='no'>

<source>
<address domain='0x0000' bus='0x03' slot='0x00' function='0x0'/>

</source>
</hostdev>
...
</devices>

</domain>

where VM_NAME is the virtual machine name, VM_DESCRIPTION—it’s descrip-
tion and VM_ARCH—architecture used (i386, x86_64 or other).

Redirection of mobile hardware components can be performed through the use of
well-known Vendor ID and Product ID numbers (VID and PID) or of their location
on the bus corresponding to the used interface (let us denoted it as INTERFACE).
In the libvirt environment, automatic device redirection can be specified in the xml-
description file:

<hostdev mode='subsystem' type='INTERFACE1' managed='no'>
<source> 
<vendor id='0xa420'/>
<product id='0x5426'/>
</source>

</hostdev>
<hostdev mode='subsystem' type='INTERFACE1' managed='no'>

<source> 
<address bus='001' device='003'/>
</source>

</hostdev>
<hostdev mode='subsystem' type='INTERFACE2' managed='no'>

<source> 
<address domain='0x0000' bus='0x03' slot='0x00' function='0x0'/>
</source>

</hostdev>

The process of redirection of such type of devices could also be done with the
help of built-in commands of libvirt:



84 A. V. Epishkina et al.

• ‘virsh attach-device VM_NAME dst-hardware-interface-passthrough.xml’—to
attach redirected device specified in some xml-description file to the virtual
machine VM_NAME;

• ‘virsh detach-device VM_NAME dst-hardware-interface-passthrough.xml’—to
detach redirected device specified in some xml-description file from the virtual
machine VM_NAME.

In termsof performingvarious functions of software-and-hardwareDST transition
from one state to another [3], it should be borne in mind that tests shall be performed
first with a permanently connected hardware component, and then reconnect it during
operation and upon completion of each test using embedded capabilities of virtual-
ization tools or using auxiliary hardware [3, 8]. This is due to the fact that when a
real user uses some software-and-hardware DST, the extraction and connection of
the hardware component may occur at an arbitrary point in time, and may also be
required due to the specific features of the hardware component itself.

In a number of cases, software-and-hardware DST testing programs shall consist
of several modules, for example:

• When testingone security functionon several computers (VM), the testingprogram
shall includemodules that operate in eachVM, as well as amodule in the computer
OS environment with a virtualization environment that performs management,
sequential switching of the DST hardware components between the VMs and
consolidation of the test results.

• When verifying the DST security functions implemented prior to the launch of the
user session (for example, identification and authentication) or before the boot of
the OS, testing should be performed in the computer OS with the virtualization
environment installed, while the modules of the testing program should also run
in the VM or DST OS (depending on the security function). This is due to the
fact that it is not always possible to determine the result of such security functions
in the computer OS, in which the VM is running. The testing program can work
only with native objects of the computer OS and cannot intercept and analyze the
results of its actions in the VMOS, including using technologies such as VMware
Unity mode for VMware virtualization tools [9], Seamless mode in VirtualBox
[10], or Coherence for Parallels virtualization tools [11].

Based on the above, it is possible to suggest an algorithm for testing security func-
tions of the software-and-hardware DST using virtualization tools. This algorithm is
applicable to all software-and-hardware DST, except for those whose security func-
tions are implemented independently of the computer. For such DST virtualization
tools can be used only when interacting over a network in order to emulate a large
number of users, processes and connection sessions. The proposed algorithm allows
to make the tests of security functions computable, which are not computable on
physical computers. The above algorithm consists is as follows:

1. It is necessary to use virtualization tools and their standard capabilities to redirect
the hardware component of the DST implementing the security functions to the
VM. In this case, the software implementation of the security tool connection



Comprehensive Testing of Software and Hardware Data Security … 85

interface, as well as of the VM components, which are similar to the components
of physical computer, shall comply with existing standards and specifications
(for example, libvirt-controlled KVM).

2. To test security functions implemented on the basis of a stationary hardware
component, it is necessary to use specialized computers, in which all components
(processor, motherboard, BIOS or UEFI, OS) support AMD IOMMU or Intel
VT-d technologies, and the virtualization tool being used shall allow redirection
of this type of components.

3. To perform reconnection of hardware components using standard features of
virtualization tools or auxiliary hardware to implement various functions of
software-and-hardware DST transitions from one state to another.

4. To implement the modules of testing programs in both the computer OS and the
VM OS (DST) when testing security functions that are implemented before the
launch of the user session or before the boot of the OS, and use several computers
(VM) with sequential connection of the hardware component, if necessary.

3 Results and Discussion

The described results allowed us to develop a software complex “Testing of secu-
rity functions of software-and-hardware data security tools”, which allows to fully
automate the processes for assembling, testing and verifying [12, 13] various types
of software-and-hardware DST. Among other things, this made it possible to orga-
nize regression testing, in which any changes in the original DST source codes are
automatically checked for violations of the security functions, which previously
functioned correctly.

In particular, let us consider the characteristic features of using the developed
testing programs forAccord-Xaccess control subsystem,which is built on the basis of
Accord-TSHM trusted start-up hardwaremodule [14]. Some of the security functions
of Accord-X are implemented independently of the computer OS (trusted start-up),
and the rest are implemented on the computer OS (identification and authentication,
access control, integrity control, creation of an isolated software environment). At
the same time, in order to carry out identification and authentication, it is required
to submit hardware identifiers that do not directly implement security functions, but
are necessary for their implementation (computability of their tests). The programs
testing security function of Accord-X carry out tests in two stages: first, before the
boot of the VM OS with respect to the security functions that run independently
of the computer OS, and then directly in the VM OS with respect to the security
functions that are implemented in the computer OS, in both cases taking into account
the possibility of connecting various additional hardware components (identifiers).
Thus, using the developed software, it became possible to automatically perform the
following sequence of actions:



86 A. V. Epishkina et al.

1. Assemble the components of the software-and-hardware DST for various
supported software and hardware platforms.

2. Install and configure access control software depending on the VM OS, in
which the testing is carried out: installation of packages, configuration of OS
components and bootloader, basic configuration of the DST.

3. Restart theVMand test operability of theDSTwith the basic settings (correctness
of the DST activation, identification and authentication when logging in the OS
with hardware identifiers, etc.).

4. Generate file system objects and access rules for testing DST security functions
with various parameters (combination of access attributes, recursion rules, access
and confidentiality levels) and in various conditions (various methods of getting
access or changing integrity).

5. Run security function tests (about 100,000 access requests with different settings
and combinations of security functions) and fix possible inconsistencies.

6. Send test results to the program “Verifier of software-and-hardware DST” [12]
for further automatic verification.

The described sequence allows to check all the security functions of Accord-X
with various combinations and in all possible states of the software and hardware
components of the DST, in which such functions can be computable, as well as to
justify the attainability and maintenance of an absolutely isolated software environ-
ment for users to ensure impossibility of violating the applicable security policies
[15]. It should be borne in mind that when using virtualization tools, the testing
accuracy may deteriorate when another level is introduced—the virtual environment
hypervisor, in which errors can arise that are not related to functioning of the DST
itself or computer hardware components. Hardware platforms emulated using virtu-
alization tools can be found not to correspond to similar physical computers. In such
cases, operability of the DST in the virtual environment does not guarantee its oper-
ability in a real computer with similar characteristics. However, similar guarantees
cannot be often provided even when using physical computers produced by different
manufacturers [2].

References

1. Kanner, T.M.: Features of using virtualization for testing software and hardware data security
tools (In Russian). Inf. Secur. 18(3), 416–419 (2015)

2. Sinyakin, S.A.: Characteristic features of Accord-TSHM compatibility in modern computers
(In Russian). In: XVIII International Conference, Complex Data Protection 2013. Elektronika
Info, vol. 6, pp. 142–144. Brest, Belarus (2013)

3. Kanner, T.M.: Applicability of software testingmethods to software and hardware data security
tools. Glob. J. Pure Appl. Math. 12(1), 167–190 (2016)

4. Wong, A.: Breaking Through the BIOS Barrier: The Definitive BIOS Optimization Guide for
PCs. Prentice Hall PTR, Upper Saddle, New Jersey (2004)

5. Zimmer, V., Lewis, T., Rothman, M.: Harnessing the UEFI Shell: Moving the Platform Beyond
Dos. Intel Press, Germany, Berlin (2010)



Comprehensive Testing of Software and Hardware Data Security … 87

6. AMD I/O Virtualization Technology (IOMMU) Specification Revision 1.26. http://developer.
amd.com/wordpress/media/2012/10/34434-IOMMU-Rev_1.26_2-11-09.pdf.Last accessed27
June 2019

7. Intel Virtualization Technology for Directed I/O (VT-d) Architecture Specification. http://
www.intel.com/content/www/us/en/embedded/technology/virtualization/vt-directed-io-spec.
html. Last accessed 27 June 2019

8. Kanner, T.M.: The effectiveness of using supporting tools for testing software and hardware
DST (In Russian). Inf. Secur. Quest. 2, 9–13 (2017)

9. VMware Workstation Documentation Center. Use Unity Mode. https://pubs.vmware.com/
workstation-9/index.jsp. Last accessed 27 June 2019

10. Oracle VM VirtualBox User Manual. Seamless windows. https://www.virtualbox.org/manual/
ch04.html#seamlesswindows. Last accessed 27 June 2019

11. Parallels Desktop User’s Guide. Working in Coherence. http://download.parallels.com/
desktop/v4/docs/en/Parallels_Desktop_Users_Guide/23413.htm. Last accessed 27 June 2019

12. Kanner, A.M., Kanner, T.M.: Applying a mathematical approach to interpreting the results of
testing software and hardware data security tools during the verification process. J. Eng. Appl.
Sci. 14(10), 3482–3491 (2019)

13. Kanner, T.M.: Adaptation of existing verification methods for software and hardware DST (In
Russian). Inf. Secur. Quest. 1, 13–19 (2018)

14. Kanner, A.M., Ukhlinov, L.M.: Access control in GNU/Linux (in Russian). Inf. Secur. Quest.
3, 35–38 (2012)

15. Kanner, A.M.: Correctness of data security tools for protection against unauthorized access
and their interaction in GNU/Linux. Glob. J. Pure Appl. Math. 12(3), 2479–2501 (2016)

http://developer.amd.com/wordpress/media/2012/10/34434-IOMMU-Rev_1.26_2-11-09.pdf
http://www.intel.com/content/www/us/en/embedded/technology/virtualization/vt-directed-io-spec.html
https://pubs.vmware.com/workstation-9/index.jsp
https://www.virtualbox.org/manual/ch04.html#seamlesswindows
http://download.parallels.com/desktop/v4/docs/en/Parallels_Desktop_Users_Guide/23413.htm

