
Global Journal of Pure and Applied Mathematics.

ISSN 0973-1768 Volume 12, Number 1 (2016), pp. 167-190

© Research India Publications

http://www.ripublication.com

Applicability of Software Testing Methods to

Software and Hardware Data Security Tools

Tatiana Mikhailovna Kanner

National Research Nuclear University MEPhI,

Kashirskoye sh., 31, Moscow, Russia.

Abstract

The article is devoted to the issues of testing software and hardware data

security tools (DST) used in modern information systems (IS) to ensure the

required level of security of the data being processed therein. The author

substantiates the need of improving the existing approaches to testing of

hardware and software DST due to the growing popularity of IS and reduction

of time spent for their creation. The article considers the applicability of

software testing methods to software and hardware DST, identifies features of

software and hardware DST depending on the principles of their operation,

which prevent from using the existing testing methods in their original form.

A mathematical model for software and hardware DST has been developed,

and the criteria of applicability of software testing methods to such DST have

been formed. On the basis of the above criteria, the requirements for

automation of the testing process have been established. As illustrated by one

of the types of software and hardware DST, the author proves the fact that

testing automation requires additional hardware equipment. The article

describes the purpose, the structure and the principle of operation of a

developed testing tool – a USB switcher used for automated testing of portable

software and hardware DST operating in an OS of a computer and having a

USB connection interface. The criteria proposed in the article allow to

determine applicability of one or another testing method to a certain software

and hardware DST, and the developed USB switcher allows to automate

testing of most of the software and hardware DST having a USB connection

interface.

Keywords: Testing, Software Testing Methods, Features Of Software And

Hardware DST, Criteria Of Applicability Of Existing Software Testing

Methods To Software And Hardware DST, A USB Switcher.

168 Tatiana Mikhailovna Kanner

Introduction
To ensure data security in the process of their storage and processing in information

systems (IS), software or software-hardware data security tools (DST) should be used.

Software and hardware DST are more secure, because when you use a software DST,

you cannot guarantee that it has not been changed and operates adequately. Therefore,

data protection should be arranged by transferring some of security functions to the

hardware level, i.e. with the help of software and hardware DST.

On the one hand, using of a DST improves system security, but on the other hand it

can lead to a deterioration of user and functional characteristics of the IS. To

minimize the adverse effect of DST, they must be tested before they are included in

the IS.

Taking into account the fact that IS are currently created and developed very fast (due

to the use of efficient tools), we need to maximally reduce the time spent to develop a

DST picking out the stages that can be fully or partially automated. Such stages

include testing, verification and elimination of the detected errors, which are repeated

while developing a DST many times. At the same time, we should take into account

the fact that existing testing methods (for example, software testing methods),

including the automated testing method, can turn out to be inapplicable to software

and hardware DST or applicable to them only subject to certain conditions or to

availability of additional hardware equipment for testing.

There arises a contradiction between the need for reliable data protection and the need

for reduction of the time consumed by inclusion of software and hardware DST into

the IS. This contradiction can be eliminated by creating methods and developing

hardware testing tools for software and hardware data security complexes. First of all,

we need to create conditions of applicability of software testing methods to software

and hardware DST, and to form applicability criteria on the basis of such conditions,

which, in turn, will demonstrate what hardware equipment should be developed, and

how testing methods should be adapted.

Widely-known scientific works pay much attention to the problem of quality and

security of software, as well as to methods and tools used for its testing. The basics

and the methods of software testing are considered in works by V.P. Kotlyarov [13],

I.V. Stepanchenko [21], S.V. Sinitsyn and N.Yu. Nalyutin [20], R. Black [3-4], L.

Tamres [22] and C. Kaner [10]. The issues of testing using the black box method, as

well as functional software testing are examined to the fullest extent in works by B.

Beizer [2]. The method of automated software testing is described in detail by E.

Dustin [7]. Works by R. Culbertson [6] and K. Beck [1] are devoted to studying the

concepts of extreme programming and rapid testing.

The issues of quality and reliability of software are considered in depth by V.V.

Lipaev [15] and G. Myers [17-18] in their works. V.I. Grekul [8] examines software

testing in terms of its implementation in information systems.

The above works consider the issues of testing that are applicable to software, but pay

little attention to software and hardware DST. Some differences between testing of

software and software-hardware complexes are studied in R. Black’s work [4].

Therefore, the following scientific and technical task arises: to develop a

methodological framework for improving testing methods used for software and

Applicability of Software Testing Methods to Software and Hardware Data.. 169

hardware DST, and to develop hardware solutions that will allow to automate the

process of testing such tools.

At the same time, the issue of testing software and hardware DST interests many

vendors, but their practically used testing methods are usually not published in

publicly available resources and have no scientific rationale.

Method
A. Forming conditions determining applicability of software testing methods to

software and hardware DST

Let us consider the differences between software testing methods and the methods

used to test software and hardware DST (the methods of positive and negative test

cases; black box, white box and gray box methods; manual, automated or semi-

automated testing methods [11]).

From the viewpoint of system knowledge (black box, white box and gray box

methods) and positivity of test cases (positive or negative test cases) as a whole, if we

do not consider the issue of testing automation with the help of these methods, it does

not matter what the testing object is: software, software DST or software-hardware

DST. Irrespective of the testing object, the corresponding tests are included in the

Testing Program and Procedure (TPP).

At the same time, the methods of positive and negative test cases, as well as black,

white and gray box methods can be included in the methods of manual, automated or

semi-automated testing (separately or together). Irrespective of the testing method

used, first of all, one should develop a TPP with the required test structure, procedure

and testing methods. On the basis of the TPP, one can perform testing manually or

develop automated tests using special automation tools. Therefore, particular attention

should be paid to the following testing methods that can include the methods of
positive or negative test cases, as well as black, white and gray box methods:

1. The method of manual testing in accordance with the TPP;

2. The method of automated testing using automation scripts;

3. The method of semi-automated testing if there is no possibility to ensure full

testing automation.

Let us point out the major features arising while applying the above software testing

methods to various software and hardware DST:

- A difficulty in fixing operation errors/bugs;

- Inability to use debuggers;

- Features connected with the hardware component:

o Presence of various form factors of the hardware component;

o A need for cross-testing of the hardware and the software components

of the DST;

o Dependence on the hardware platform;

- Features connected with the type and the operation principle of the hardware

component:

170 Tatiana Mikhailovna Kanner

o Portability (for portable hardware component);

o Inability to use automation tools;

o A need to test components having no security functions (flash memory,

etc.), and their interaction with components performing security

functions;

- Inability to test using virtualization tools;

- A need to test limit/boundary values in the conditions of a limited memory of

the hardware component;

- Features arising while using program interfaces to test the hardware

component, a possibility to test the software and the hardware components

separately.

Let us consider the above features in relation to one of the DST – a personal

cryptographic data security tool (PCDST) SHIPKA [12], [19] representing a portable

software and hardware DST operating in an OS of a computer. The following

arguments will be generally applicable to all other DST of this type.

The PCDST SHIPKA operates in the environment of an OS, therefore unlike a DST

operating independently from the computer, there is a possibility to fix errors of both

the hardware and the software components of the PCDST SHIPKA in the OS, as well

as a possibility to use debuggers and other test tools (automation tools, fuzzers, etc.).

The PCDST SHIPKA can be implemented on the basis of various form factors of

USB devices, each of which can differently interact with the hardware component.

Therefore, while testing it, one must take into account various ways of implementing

the hardware component.

Since the hardware component of the PCDST SHIPKA is implemented as a USB

device, and the DST itself operates in an OS, there is no need to test it on various

hardware platforms (there are no limitations on computer hardware characteristics;

compliance with the specification of the corresponding USB interface version will be

enough).

As to the PCDST SHIPKA, there is a need for functional cross-testing of its

components and their interaction (reliability of the management interface, reliability

of any hardware components – the internal memory, etc.). Some versions of the

PCDST SHIPKA include a flash memory. Let’s call such DST “DST with a flash

memory”.

DST with a flash memory (like many other software and hardware DST operating in

the OS) represent a complex made of software and a composite hardware device (an

alienable one, if we speak about DST with a flash memory), which includes:

- Components directly performing data security functions (a microprocessor,

internal software/firmware, software in the OS, etc.);

- Other components having no direct security functions, and if we speak about a

DST with a flash memory – the flash memory.

While testing DST with a flash memory (both, manually or by automated means), the

following tests should be also carried out:

Applicability of Software Testing Methods to Software and Hardware Data.. 171

1. Testing of the flash memory (determining speed characteristics, load tests, etc.);

2. Testing of interaction of the components performing security functions with the flash

memory.

Thus, while testing DST operating in an OS, which includes a flash memory, the TPP

should be supplemented with the above tests. At the same time one should remember

that, for example, testing of a flash memory in terms of its reliability can be done

manually, but it is unreasonable taking into account time consumption, because it

requires a large number of cycled atomic read/write operations of variously-sized data

blocks. To test the flash memory, it would be reasonable to use some existing and

publicly available specialized tools, rather than to develop them [12].

While automating testing of software and hardware DST with a flash memory (and

many other alienable software and hardware DST), there arises a nuance connected

with the need to reconnect the hardware component in the process of testing their

functions used by the end user. It is impossible to adequately emulate work of a real

user of such DST without using additional testing tools.

To test the PCDST SHIPKA, virtualization tools may be used, because USB devices

can be passed through to a virtual OS. However, in case of such passthrough of the

hardware component to a virtual OS, new errors can arise that do not occur in a real

computer and are associated with inadequate operation of virtualization tools.

In case of load and stress testing of the components performing security functions of

the PCDST SHIPKA, one should also test limit values of the DST characteristics [12].

For example, correctness of operation with the maximum possible number of

cryptographic keys in the device (which can exceed 200). To do this, one should

generate the required number of keys, check correctness of operation of the PCDST

SHIPKA, and in case of any errors – gradually reduce the number of keys and repeat

testing until a certain critical value, which is quite difficult to do manually.

One of the ways to automate testing of the PCDST SHIPKA is to use the Software

Development Kit (SDK) for standard interfaces, which is implemented for the PCDST

SHIPKA for the purpose of possible use of cryptographic functions of the device by

third-party developers. Three standard interfaces have been implemented for the

PCDST SHIPKA so far: Crypto Application Programming Interface (Crypto API),

Public-Key Cryptography Standard #11 (PKCS#11), Application Protocol Data Unit

(APDU), and the corresponding SDK includes a set of examples how they may be

used. Such examples can be used to automate functional testing of the PCDST

SHIPKA, since their successful running guarantees that the utilities correctly running

on the basis of such interfaces will run correctly on the PCDST SHIPKA. However,

the software component of the PCDST SHIPKA should be tested separately (because

its operation is not checked while using the SDK), for example, with the help of

testing automation tools.

On the basis of the foregoing, testing of DST with a flash memory (operating in an

OS) can be generally automated, subject to the following conditions:

172 Tatiana Mikhailovna Kanner

Condition 1. Use of additional testing tools allowing to emulate work of a real user,

including reconnection of the DST in the process of its configuring and use, if

necessary.

Condition 2. Support for the OS environment where automation scripts can operate.

Condition 3. Presence of automation scripts and other tools of testing the components

not performing security functions (the flash memory, etc), and interaction of the

components of software and hardware DST.

Manual testing of such DST is rather difficult and requires at least using third-party

programs to test the components not performing security functions (the flash memory,

etc.) – i.e. at least partial automation is desirable.

It is necessary to meet conditions 1-3 to arrange automated testing of the DST

operating in an OS and having a portable hardware component. As to the DST

operating in an OS and having a stationary hardware component, it is enough to meet

conditions 2-3.

Thus, we have formed conditions of applicability of software (software DST) testing

methods to software and hardware DST operating in an OS. On the basis of the above

conditions, criteria of applicability of software testing methods to software and

hardware DST can now be established.

B. Formalizing criteria determining applicability of software testing methods to

software and hardware DST

Let us formalize criteria determining applicability of software testing methods to

software and hardware DST using key provisions of the system analysis, the formal

system theory, as well as the algorithm and the set theories.

Let ,...},,,{ 4321 mmmmM  denote a set [5] of all the software and hardware DST where

,...,,, 4321 mmmm are some software and hardware DST (for example, the PCDST

SHIPKA).

Let naM denote a set of software and hardware DST, which can be tested manually

(i.e. not automatically).

In general, naMM  for any consistent DST (MMna  by convention, and any

consistent software and hardware DST can be tested manually). However, consistency

of a particular DST, i.e. existence of a possibility to implement its functions in

principle, should be reasoned.

The set M can be expressed in the following way:
MMM saa 

where:

aM is a set of software and hardware DST, which can be tested automatically.

saM is a set of software and hardware DST, which can be tested automatically

only in part (i.e. semi-automated).

Here:

1. naа MM  , nasa MM  are subsets of the set naM .

2. The subsets aM and saM are disjoint –  saa MM .

Applicability of Software Testing Methods to Software and Hardware Data.. 173

The set of software and hardware DST (M) is shown in Figure 1.

Figure 1: The set of software and hardware DST

In addition, the set M can be expressed in this way:

nosos PPM  ,

where:

osP is a set of software and hardware DST operating in an OS.

nosP is a set of software and hardware DST operating independently from an

OS.

The set osP consists of two subsets: stationaryportableos PPP  ,

where:

portableP is a set of portable software and hardware DST operating in an OS.

stationaryP is a set of stationary software and hardware DST operating in an OS.

Here  stationaryportable PP .

Definition 1. Let us construct a mathematical model [14, 23] of some abstract

software and hardware DST in the following way: Mm can be expressed as

 OPVFm ,, , which is a selection of the following sets:

– F is a set of objective functions performed by software and hardware DST

(for example, encryption, use of a digital signature, access control);

– V is a set of possible states of the hardware component (here Vv 0 is an

initial state, for example, when the hardware component has not been

initialized);

– OP is a set of state transition functions, where the software and hardware DST

transits from one state into another (for example, initialization of the hardware

component and its transition to the initialized state).

174 Tatiana Mikhailovna Kanner

Definition 2. The DST can be in a particular state at any specific time, let us denote it

),(' vF , where Vv is the current state of m , and 'F is a subset of objective functions

of m , which can be performed in this state v (i.e. a set of objective functions of the

DST, which can be performed in the current state v , FF '). Here combining all the

FF ' , where FF ' , Vv .

Definition 3. The state transition function for the software and hardware DST can be

expressed in the following way:

),(),(: 2
''

1
' vFvFOPop 

This means that m transits from one state),(1
' vF into another),(2

'' vF .

Here, some objective functions of the DST can be performed only in particular states

of the DST’s hardware component. For example, as a rule, no function of a DST can

be performed before first initialization of its hardware component; encryption

functions of a cryptographic DST cannot be used unless encryption keys are

generated, etc.

Thus, Definition 3 implies that in accordance with the algorithm theory [16], some

functions of the set F are computable only in particular states of the set V , and these

functions can turn to be incomputable in other states.

In addition, functions of the set OP can be functions performed directly in the

software and hardware DST (nonobjective functions, such as the initialization

function), or external functions that should be performed additionally (for example,

entering a PIN code, reconnection of the hardware component, etc.).

Let us define the elements of the objective functions set performed by the software

and hardware DST.

Definition 4. Let Mm and  OPVFm ,, , where OPVF ,, are the sets of

objective functions, states and transition functions in accordance with Definitions 1-3.

Let },...,{ 1 nFFF  , where n ( is a set of natural numbers from now on) is a

finite set of objective functions performed by m .

All the functions in F can be expressed as an ordered tuple [9] of

subfunctions f performed one after another (steps required to perform the function):











k ,)(

...

)(

 ,,...,1 ,

11

kk

ii

inputf

inputf

FniFF

where:

input is a tuple of formal parameters transferred to iF depending on

implementation of the objective function (for example, in case of file encryption, this

will be the file to be encrypted, the path for saving the encrypted result and the

Applicability of Software Testing Methods to Software and Hardware Data.. 175

encryption key). kinputinput ,...,1 are formal parameters of subfunctions of the

objective function iF .

Here, for kj ,...,1 :

occurs)error an (if

ly)successful performed is (if

)(,

j

jjij

f

False

True
inputfFf







If Falsef j  , the objective function iF will return error.

If Truef j  , iF will return success if kj  .

Let us define manual test functions for software and hardware DST on the basis of

Definition 4 in the following way:

Definition 5. Let Mm and  OPVFm ,, , where OPVF ,, are the sets of

objective functions, states and transition functions in accordance with Definitions 1-3.

Let },...,{ 1 nFFF  , where n is a finite set of objective functions performed by m .

Since naMM  , there will be },...,{ 1 nRRR  for m – a finite set of manual test

functions corresponding to functions },...,{ 1 nFF .

All the functions in R can be expressed in the form of an ordered tuple of

subfunctions r performed one after another (steps required to perform the function):











k ,),(

...

)1,1(1
 ,,...,1 ,

k
output

k
input

k
r

outputinputr

iRniRiR

where:

input is a tuple of formal parameters passed to iR , kinputinput ,...,1 are formal

parameters of subfunctions of the function iR .

output is a tuple of output data (an operation log, an error code, an additional

result, etc.), koutputoutput ,...,1 are the output data of subfunctions of the function iR .

Here, for kj ,...,1 :

occurs)error an (if

ly)successful performed is (if

),(, jf

False

True
joutputjinputjriRjr







If Falserj  , the objective function iR will return error, and

joutputoutput  .

If Truerj  , then if kj  , iR will return success, and joutputoutput  .

If Truerj  and kj  , iR will continue execution, and 1 joutputoutput .

176 Tatiana Mikhailovna Kanner

Definition 6. ij Rr  the subfunction of the manual test function is computable on

the basis of Definition 5, if Ff j  corresponding to it is computable for kj ,...,1 ,

k .

Definition 7. Let MOPVFm  ,, . If RRi  (the manual test function in

accordance with Definition 5) contains only computable subfunctions in accordance

with Definition 6, iR will be a computable manual test function, ni ,...,1 , n ,

and R will be a set of computable manual test functions (and DST naMm).

Let us formalize a general criterion of the possibility to test software and hardware

DST manually on the basis of Definitions 1-7.

Proposition 1. (General criterion of the possibility to test software and hardware

DST manually):

Let Mm and  OPVFm ,, is in the state Vv 0
, where OPVF ,, are the sets of

objective functions, states and transition functions in accordance with Definitions1-4.

Let },...,{ 1 nRRR  , n is a finite set of manual test functions corresponding to

objective functions of m in accordance with Definition 5.

Then naMm  the following conditions are met:

1. Either ij Rr  , ni ,...,1 , kj ,...,1 , k is computable in accordance with

Definition 6 in the state Vv 0 for RRi  (i.e. R is a set of computable manual

test functions in the state 0v in accordance with Definition 7);

2. Or OPopop L  ,...,1
 (functions of transition to the states

Lvv ,...,1
): ij Rr  ,

which is incomputable in the state 0v , is computable in one of the states
Lvv ,...,1
 for

RRi  .

For example, this means that:



















kk
output

k
input

k
r

joutputjinputjr

zop

outputinputr

iR

),,(

...

),(

...

)
1

,
1

(
1

where:

jr is incomputable in the initial state.

zop is a function of transition to a state where jr is computable (Lz ,...,1).

kinputinput ,...,1 are formal parameters of subfunctions of the function iR .

Applicability of Software Testing Methods to Software and Hardware Data.. 177

koutputoutput ,...,1 are output data of subfunctions of the function iR .

Let us define a set of automation functions (scripts) for software and hardware DST

on the basis of Definition 4.

Definition 8. Let Mm and  OPVFm ,, , where OPVF ,, are the sets of

objective functions, states and transition functions in accordance with Definitions 1-3.

Let },...,{ 1 nFFF  , where n is a finite set of objective functions performed by

m .

Let us define a set of automation functions (scripts) for m , which will be applicable to

software and hardware DST, as },...,{ 1 nSSS  , where n is a finite set of

automated test functions corresponding to objective functions },...,{ 1 nFF .

If we express all the functions in F as a tuple of subfunctions f performed one after

another (in accordance with Definition 4), we can define the automated test functions

in the following way:




















koutputinputs

outputinputs

countlfor

S

kkk

i

),,(

...

),(

}

){,...,1(

111

where:

count is a number of repeated executions of the automated test function.

input is a tuple of formal parameters transmitted to iS , kinputinput ,...,1 are

formal parameters of subfunctions of the function iS .

output is a tuple of output data (an operation log, an error code, an additional

result, etc.) required for analysis and reporting of the automation tool.

koutputoutput ,...,1 are output data of subfunctions of the function iS .

Here, for kj ,...,1 :

occurs)error an (if

ly)successful toolsautomationby performed is (if

),(,

j

jjjij

f

False

True
outputinputsSs







and:

178 Tatiana Mikhailovna Kanner

'

'

1

...

}

{

countoutput

output

output
















where:

count1,...,l ,
'

 joutput
l

output , if Falses j  on iteration l . iS continues the

next iteration if countl  , and otherwise it is completed.

count1,...,l ,1

'
 jl outputoutput if Truejs  on iteration l (kj ). iS

continues the current iteration.

count1,...,l ,
'

 jl outputoutput if Truejs  on iteration l (kj ). iS continues

the next iteration if countl  , and otherwise it is completed.

When iS finishes, success or fail of a certain iteration should be determined on the

basis of output data.

Definition 9. ij Ss  automation function indicated in Definition 8 is computable if

ij Ff  corresponding to it is also computable for kj ,...,1 , k , and there are

sufficient conditions to perform js and a possibility to fix the result of js .

Definition 10. Let MOPVFm  ,, . If SSi  (the automation function in

accordance with Definition 8) contains only computable automation subfunctions in

accordance with Definition 9, iS will be a computable automation function, ni ,...,1 ,

n , and S will be a set of computable automation functions (and DST aMm).

Let us formalize general criteria of possible full or partial testing automation for

software and hardware DST on the basis of Definitions 1-4, 8-10.

Proposition 2. (General criterion of possible testing automation for software and

hardware DST):

Let Mm and  OPVFm ,, is in the state Vv 0 , where OPVF ,, are the sets of

objective functions, states and transition functions in accordance with Definitions1-4.

Let },...,{ 1 nSSS  , n is a finite set of automation functions corresponding to

objective functions of m in accordance with Definition 8.

Then aMm  the following conditions are met:

1. Either ij Ss  , ni ,...,1 , kj ,...,1 , k is computable in accordance with

Definition 9 in the state Vv 0 for SSi  (i.e. S is a set of computable automation

functions in the state 0v in accordance with Definition 10);

Applicability of Software Testing Methods to Software and Hardware Data.. 179

2. Or OPopop L  ,...,1 (automated functions of transition to the states Lvv ,...,1):

ij Ss  , which is incomputable automation subfunctions in the state 0v , is

computable automation subfunctions in one of the states Lvv ,...,1 for SSi  .

For example, this means that:

























koutputinputs

),output(inputs

op

outputinputs

countlfor

S

kkk

jjj

z

i

),,(

...

...

),(

}

){,...,1(

111

where:

js is incomputable in the initial state.

zop is a function of automated transition to a state where js is computable

(Lz ,...,1).

kinputinput ,...,1 are formal parameters of subfunctions of the function iS .

koutputoutput ,...,1 are output data of subfunctions of the function iS .

Corollary 1. (General criterion of possible partial automation of testing software

and hardware DST):

Let Mm and  OPVFm ,, is in the state Vv 0 , where OPVF ,, are the sets of

objective functions, states and transition functions in accordance with Definitions1-4.

Let },...,{ 1 nSSS  , n is a finite set of automation functions corresponding to the

objective functions of m in accordance with Definition 8.

Then saMm   at least one SSi  , iS is a computable automation function in

accordance with Definition 10, ni ,...,1  the following conditions are met for such

iS :

1. Either ij Ss  , kj ,...,1 , k is a computable automation subfunction in

accordance with Definition 9 in the state Vv 0 for SSi  ;

2. Or OPopop L  ,...,1 (automated functions of transition to the states Lvv ,...,1):

ij Ss  which is incomputable automation subfunctions in the state 0v , is

computable automation subfunctions in one of the states Lvv ,...,1 for SSi  .

C. Requirements for the testing tools applicable to software and hardware DST

operating in an OS

Let us apply the general criterion determining the possibility of manual testing from

Proposition 1 to the PCDST SHIPKA.

180 Tatiana Mikhailovna Kanner

Let us denote the PCDST SHIPKA as shipkam , Mmshipka .

Axiom 1. osportableshipka PPm  .

Proposition 3. Let MOPVFm shipkashipkashipkashipka  ,, be the PCDST SHIPKA in

accordance with Definition 1. Then nashipkashipkashipkashipka MOPVFm  ,, .

Proof: Let us prove Proposition 3. shipkam can be in the following states

shipkaVvvvvv 43210 ,,,, [19]:

- 0v is an initial state, when the device is not initialized (not formatted, and no

authorization parameters, administrator password, and user PIN and PUK codes

have been set).

- 1v is a state, when the device is initialized and prepared for operation (it has been

formatted, and authorization parameters, an administrator password, and user PIN

and PUK codes have been set).

- 2v is a state, when the device is ready for operation, and the user PIN code have

not been entered (cryptographic keys and certificates needed for encryption and

signing procedures have been generated or imported, or a user has been registered

for protected login in the system, or pass cards have been created, or any two or

more of the above conditions have been met).

- 3v is a state, when the device is ready for operation like in the state 2v , but an

adequate user PIN code have been entered.

- 4v is a state, when the device is in the technological mode.

At the initial time, the PCDST SHIPKA can be in the states 0v , 1v , 2v , 4v and cannot

be in the state 3v .

At the same time, since the PCDST SHIPKA is a portable DST (portableshipka Pm ) in

accordance with Axiom 1, for shipkam there exist states shipkaVvvvv 
'

4

'

2

'

1

'

0 ,,, that are

similar to the states shipkaVvvvv 4210 ,,, , but in which the device is not connected to a

USB port of the computer. At the initial time the PCDST SHIPKA can also be in the

states '
4

'
2

'
1

'
0 ,,, vvvv .

The operation principle of the PCDST SHIPKA implies that all of its objective

functions are computable only in the state 3v .

Therefore, in accordance with Proposition 1, to make the task of manual testing for

the PCDST SHIPKA computable, there should exist at least transition functions

shipkaOPopop 81,..., between the following states of shipkam :

 – 321 : vvop  ;

– 3

'

22 : vvop  ;

– 313 : vvop  ;

– 3

'

14 : vvop  ;

Applicability of Software Testing Methods to Software and Hardware Data.. 181

– 305 : vvop  ;

– 3

'

06 : vvop  ;

– 347 : vvop  ;

– 3

'

48 : vvop  .

Possible states and transition functions of shipkam are presented in Figure2.

Figure 2: Possible states and transition functions of the PCDST SHIPKA

For shipkam , such transition functions are as follows [19]:

1op – entering of the PIN code;

2op – a composite transition function comprising connection of the device to a USB

port of the computer and execution of 1op ;

3op – a composite transition function comprising generation procedures and import

of cryptographic keys and certificates, or registration of a user for protected

login in the operating system, or creation of a pass card, or a combination of any

two or more of the above conditions, as well as execution of 1op ;

4op – a composite transition function comprising connection of the device to a USB

port of the computer and execution of 3op ;

5op – a composite transition function comprising device initialization and execution

of 3op ;

6op – a composite transition function comprising connection of the device to a USB

port of the computer and execution of 5op ;

182 Tatiana Mikhailovna Kanner

7op – a composite transition function comprising transition of the device from the

technological mode to the state 0v , 1v , or 2v and execution of 5op , 3op or 1op ,

correspondingly;

8op – a composite transition function comprising connection of the device to a USB

port of the computer and execution of 7op .

All the above transition functions can be performed manually, therefore all the

objective functions can be computable after corresponding transitions in case of

manual testing of the PCDST SHIPKA, which was to be proved.

Let us formalize particular criteria of possible automation of testing the PCDST

SHIPKA using Conditions 1–3 and the general criterion provided in Proposition 2.

Proposition 4. (Particular criterion of possible automation of testing the PCDST

SHIPKA):

Let MOPVFm shipkashipkashipkashipka  ,, is the PCDST SHIPKA in accordance

with Definition 1.

Then ashipkashipkashipkashipka MOPVFm  ,,  SSi  (in accordance with

Definition 8) shipkaOPopopopop  8642 ,,, (in accordance with the proof of

Proposition 3), that allow to connect/reconnect the device to a USB port of the

computer using automated tools, consequently incomputable automation functions

ij Ss  become computable.

Proof: It follows from Definitions 8, 9, 10 and Proposition 2 that ij Ss  should be

computable automation functions in any state shipkaVv .

It follows from the proof of Proposition 3 that all the transition functions from

shipkaOP , except for shipkaOPopopopop 8642 ,,, , can be automated, and therefore, if we

anyhow automate such transition functions, to make the task of automated testing of

the PCDST SHIPKA computable in accordance with Proposition 2, it will be enough

to initiate the corresponding function of automated transition from one state (in which

some js is incomputable) into another one (in which this function js is computable).

The shipkaOPopopopop 8642 ,,, indicated in the conditions should be a technical testing

tool that can anyhow connect and disconnect the PCDST SHIPKA from a USB port

of the computer.

Let us formulate a Corollary about possible testing of portable software and hardware

DST operating in an OS on the basis of Conditions 1-3 and Proposition 4.

Applicability of Software Testing Methods to Software and Hardware Data.. 183

Corollary 2. (Requirement for the hardware equipment in case of automating

testing of portable software and hardware DST operating in an OS):

Let MOPVFm  ,, in accordance with Definition 1, and portablePm .

Then aMOPVFm  ,,  the conditions of Proposition 2 are met, and one of the

existing transition functions OPop allows to connect/disconnect the DST to the

computer using automation tools (i.e. there is hardware equipment allowing to

automatically connect/disconnect the DST to the computer).

Results and Discussion
Proposition 3 demonstrates that software and hardware DST such as the PCDST

SHIPKA can be tested manually without any additional hardware equipment.

Proposition 4 and Corollary 2 set requirements for the hardware equipment needed for

automated testing of the PCDST SHIPKA and portable DST operating in an OS.

Taking into account these requirements, as well as Conditions 1-3, it becomes clear

what properties a hardware testing tool should have and how automated and semi-

automated testing methods should be adapted to make them applicable to portable

DST operating in an OS.

As to stationary software and hardware DST operating in an OS, one should apply the

general criterion stipulated in Proposition 2, since such DST possess no similar

properties as those indicated in Corollary 2 and typical of all the DST of such a type.

Thus, we can conclude that software (software DST) testing methods are applicable to

software and hardware DST operating in an OS, subject to the special characteristics

of such DST (and sometimes, of each particular DST).If we speak about the PCDST

SHIPKA operating in an OS, it will be reasonable to use only semi-automated testing

(using tools for testing the flash memory), or automated testing and additional

hardware equipment allowing to automatically connect/reconnect the PCDST

SHIPKA to the computer, switching this equipment on or off while carrying out

automated tests.

Connection/reconnection of the PCDST SHIPKA to the computer can be emulated

with the help of software tools (using BIOS or settings of a particular operating

system). However, such connection/reconnection cannot ensure full emulation of a

physical disconnection (for example, power supply cannot be switched off), which

makes it difficult to use such software for testing of portable software and hardware

DST operating in an OS (including the PCDST SHIPKA). Moreover, such software

cannot be universal for various versions of the OS, BIOS, etc. Therefore, to

connect/reconnect the PCDST SHIPKA (and other portable software and hardware

DST) to the computer, it will be reasonable to use hardware testing tools.

While developing hardware testing tools, one should take into account the type of the

DST’s connection interface to the computer (a USB interface in case of the PCDST

SHIPKA), and the operation principle of such tools will be similar for various

interfaces. The hardware testing tool implemented for one of the interface types can

be used for various DST using this interface for connection to the computer.

184 Tatiana Mikhailovna Kanner

Accordingly, the so-called USB switcher has been developed (its appearance is shown

in Figure 3). It is a software and hardware complex, which represents:

– Hardware equipment installed between the USB interface of the computer and

the DST on the same USB channel and switching it in accordance with the

commands received through the control channel;

– Software allowing to send an appropriate command from the OS through the

control channel (to switch on or off data transmission and power supply of the

switch-controlled USB device).

Figure 3: Appearance of the USB switcher

Such hardware equipment can physically interrupt power supply of various USB

devices connected to it (for example, the PCDST SHIPKA) without physically

disconnecting/reconnecting them. The USB switcher with the switch-controlled

PCDST SHIPKA is shown in Figure 4.

Figure 4: The USB switcher with the switch-controlled PCDST SHIPKA

Applicability of Software Testing Methods to Software and Hardware Data.. 185

The USB switcher is designed to perform the following functions:

1. Controlled reconnection of USB devices in the process of their automated

testing (this means that the USB switcher is used as a hardware testing tool);

2. Controlled access lock to the USB channel (the USB switcher is used as a data

security tool locking prohibited USB devices and allowing access to permitted

USB devices).

The diagram of connecting a DST with a USB interface to a computer through the

USB switcher is shown in Figure 5.

Figure 5. The diagram of connecting a DST with a USB interface to a computer

through the USB switcher

Functionally, the USB switcher consists of the following components:

– A hardware component, comprising:

– A microcontroller;

– Two connectors USB – USB1 and USB2 (see Figure 3), where USB1 is used

to pass control commands from the computer to the switcher, and USB2 is

used to transmit data to and from the USB device connected to the switcher

(USB1 and USB2 are connected to the computer with the help of connecting

cables);

– One connector USB – USB3 used to connect USB devices to the switcher;

– A USB data line multiplexer USB2-USB3;

– A power electric key switch USB2-USB3;

– Light-emitting diodes indicating the switcher’s status (red and green);

– A reset switch (to reboot the internal software);

– An external power input for the microcontroller, keys and light-emitting

diodes (power can be supplied through USB1 or from an external source using

this input, if necessary).

– Internal software (firmware) representing software launched from the hardware

component upon receipt of power and performing the main functions of the

software and hardware complex;

– External software, comprising:

– Libraries to embed and use the complex in third-party software;

186 Tatiana Mikhailovna Kanner

– Command-line utilities for switching USB devices (using the libraries).

Let us consider the operation principle of the USB switcher in detail.

Upon switching on power supply of the hardware component (i.e. upon connection of

USB1 to the computer or provision of power to the external power input), the

firmware is launched, which consecutively performs the following functions:

– Tests operability of the hardware component;

– Switches on the red LED (notifies that the hardware component is ready for

work);

– Switches off data transmission and power supply of USB2-USB3;

– Switches off the green LED (notifies that USB2-USB3 are switched off);

– Waits for messages through the control interface USB1.

Using a library needed to embed the complex in third-party software or a command-

line utility operating on its basis, the following commands can be sent to the hardware

component:

– To switch on data transmission and power supply of USB2-USB3 (which is

identified by a green LED on);

– To switch off data transmission and power supply (which is identified by a

green LED off);

– Request the switching status.

Switching of the USB channel (USB2-USB3) is ensured by synchronous switching on

and off of the data line multiplexer and power supply. Commands between the

external software and the firmware are passed by exchanging messages in a special

format through the control channel USB1.

Upon receipt of a message (containing a command for the hardware component)

through the control channel USB1, the firmware performs the following actions:
- Extracts the command for the hardware component from the message;

- Executes the command (depending on the command – switches on or off data

transmission and power supply of USB2-USB3 and correspondingly changes the state

of the green LED);

- Returns the result of command execution through USB1.

For the purpose of using the USB switcher, there is a program interface (implemented

in the library needed to embed and use the complex in third-party software)

comprising a set of the following functions:
- std::list<std::string>US_Enumerate();

- std::string US_ON(std::string usbSwitcher);

- std::string US_OFF(std::string usbSwitcher).

Where:
- usbSwitcher is a line (from the list returned by US_Enumerate()) identifying the USB

switcher, to which the command is passed (like “USB Switcher X”, where X is the

number of the switcher connected to the computer, beginning from “0”);

Applicability of Software Testing Methods to Software and Hardware Data.. 187

- US_Enumerate is a function searching for and outputting a list of found and currently

available USB switchers (or an empty list, if no switchers are connected to the

computer);

- US_ON is a function passing the command to switch on data transmission and power

supply of the devices connected to the USB switcher (in case of successful operation,

it returns “SUCCESS”, otherwise it generates an exception like std:string with a

detailed description of the error);

- US_OFF is a function passing the command to switch off data transmission and

power supply of the devices connected to the USB switcher (in case of successful

operation, it returns “SUCCESS”, otherwise it generates an exception like std:string

with a detailed description of the error).

While using the USB switcher, the following parameters should be passed as input to

the command-line utility (USBSwitcherConsole.exe):
- list – to output a list of available USB switchers (i.e. the function US_Enumerate

from the library of embedding and using the complex in third-party software is

performed);

- on<switcherName> – to switch on data transmission and power supply of the devices

connected to the corresponding switcher (i.e. the function US_ON from the library of

embedding and using the complex in third-party software is performed). If the

<switcherName> is not specified the command is passed to the first available

switcher;

- off<switcherName> – to switch off data transmission and power supply of the devices

connected to the corresponding switcher (i.e. the function US_OFF from the library

of embedding and using the complex in third-party software is performed). If the

<switcherName> is not specified, the command is passed to the first available

switcher.

While developing the USB switcher, the existing solutions resembling it in terms of

their functions have been analyzed. Thus, in spheres not connected with testing data

security tools (for example, in systems like “smart house”), some tools are used

containing a USB relay, which is able to remotely switch/turn off USB devices.

However, if we use such a USB relay as a basis for the USB switcher, there can arise

problems with signal alignment or with appearance of the so-called “parasite”

currents (when the switcher is being turned off), and therefore it can be difficult to

support some interfaces such as USB-3.0. To use the USB relay as a basis for the

USB switcher, one should design and assemble a similar board (eliminating the above

defects), and develop software and firmware. No publicly available ready-to-use

analogs of the developed USB switcher for testing software and hardware DST,

including those based on a USB relay, have been found.

188 Tatiana Mikhailovna Kanner

Conclusion
As a rule, any software and hardware DST can be tested manually, without using any

additional testing tools or adapting manual testing methods. However, testing of some

DST, for example, DST with a flash memory, requires at least using automated testing

tools for the flash memory, otherwise testing of such DST can turn out to be quite

long. That is why, to test DST with a flash memory, it will be reasonable to use

automated or semi-automated testing methods.

To automate testing of various software and hardware DST, the following general

conditions should be met:
- Sufficient conditions for operation of automation scripts (in an OS of a computer or a

DST);

- A possibility to fix the results of automated testing;

- Availability of automation scripts for functional cross-testing of the components of a

software and hardware DST (the components performing and not performing security

functions of the DST);

- A possibility of automated transition from such a state of a software and hardware

DST, in which some of its functions are incomputable, to a state, in which these

functions become computable.

In case the above conditions are not met for one or more functions of the DST, only

the semi-automated testing method can be applied.

To automate testing of portable software and hardware DST operating in an OS,

additional hardware equipment should be used allowing to automatically

connect/disconnect the DST to a computer. Stationary software and hardware DST

operating in an OS have no such properties (which are typical of all the DST of this

type).

The developed software and hardware complex (the UBS switcher) can be used to

automate testing of portable software and hardware DST operating in an OS and

having a USB connection interface (including the PCDST SHIPKA), when it is

necessary to automatically connect/reconnect the DST to a computer, for example to

emulate a user’s actions performed while working with a DST.

The USB switcher fully emulates physical disconnection and connection of the DST

to a computer both, at the level of power supply and data transmission. Therefore, this

software and hardware complex meets all the requirements for hardware equipment

needed to automate testing of portable software and hardware DST operating in an OS

from Corollary 2. Alongside with this target use of the USB switcher as a hardware

testing tool, it can be used as a data security tool locking prohibited USB devices and

allowing access to permitted devices.

Thus, the criteria proposed in this article allow to determine the possibility to apply

one or another testing method to a particular software and hardware DST operating in

an OS. To automate testing of one of the types of software and hardware DST

(portable software and hardware DST operating in an OS and having a USB

connection interface), hardware equipment has been developed to be used together

with automated tests by embedding therein commands to controllably

Applicability of Software Testing Methods to Software and Hardware Data.. 189

connect/disconnect the DST. Such hardware equipment allows to reduce the time

needed to test a DST before it is included in an IS.

The topic discussed in this article can be further developed by improving/adapting the

USB switcher in the following ways: to test portable software and hardware DST with

another connection interface and to test DST supporting the interface USB-3.0. The

USB switcher can be also improved to allow combining several connection interfaces

of DST in one form factor (for example, USB-2.0 and USB-3.0) or to allow

sequentially connect the DST being tested to various computers (this can be required

to test some of the DST). Another promising field of development can be formation of

similar criteria determining applicability of software testing methods to other types of

software and hardware DST (operating independently from an OS or in an OS, with a

portable or stationary/embedded hardware component), as well as use of the

developed USB switcher in the process of testing such DST and development of new

testing tools on its basis.

References

[1] Beck, K. (2004). Extreme Programming Explained: Embrace Change (2nd ed.).

Boston: Addison-Wesley.

[2] Beizer, B. (1995). Black-Box Testing Techniques for Functional Testing of

Software and Systems. New York: Wiley.

[3] Black, R. (2004). Critical Testing Processes: Plan, Prepare, Perform, Perfect.

Boston: Addison-Wesley.

[4] Black, R. (2009). Managing the Testing Process: Practical Tools and

Techniques for Managing Hardware and Software Testing (3rd ed.).

Indianapolis: Wiley.

[5] Bourbaki, N. (2004). Theory of sets. Berlin: Springer-Verlag. DOI:10.1007/978-

3-642-59309-3.

[6] Culbertson, R., & Brown, C. (2002). Rapid Testing. Upper Saddle River, NJ:

Prentice Hall PTR.

[7] Dustin, E., & Rashka, J. (1999). Automated Software Testing: Introduction,

Management, and Performance. Reading, Mass.: Addison-Wesley.

[8] Grekul, V.I., Denishenko, G.N., & Korovkina, N.L. (2005). Proektirovanie

informatsionnykh sistem [Design of Information Systems]. Moscow: NOU

INTUIT. (in Russian).

[9] Hilbert, D., & Bernays, P. (1982). Osnovaniya matematiki. Logicheskie

ischisleniya i formalizatsiya arifmetiki [Foundations of Mathematics. Logical

Calculus and Formalization of Arithmetics]. Moscow: Nauka. (in Russian).

[10] Kaner, C., & Falk, J. (1999). Testing Computer Software (2nd ed.). New York:

Wiley.

[11] Kanner (Borisova), T.M., & Gadasin, V.A. (2012). Zadacha testirovaniya

apparatnykh sredstv zashity informatsii [The Task of Testing Hardware Data

Protection Tools]. Information Security Questions, (3), 10–16. (in Russian).

190 Tatiana Mikhailovna Kanner

[12] Kanner (Borisova), T.M., & Oblomova, A.I. (2013). Sposoby avtomatizatsii

testirovaniya SZI, funktsioniruyushikh v OS, na primere PSKZI SHIPKA

[Testing Automation Methods of Data Security Tools, Operating in OS: PCDST

SHIPKA as an Example]. Elektronika-info, (6), 117–118. (in Russian).

[13] Kotlyarov, V.P., & Kolikova, T.V. (2006). Osnovy testirovaniya

programmnogo obespecheniya [Fundamentals of Software Testing]. Moscow:

Binom. (in Russian).

[14] Krupsky, V.N., & Plisko, V.E. (2009). Teoriya algoritmov [Theory of

Algorithms]. Moscow: Academia. (in Russian).

[15] Lipaev, V.V. (1986). Testirovanie programm [Testing Programs]. Moscow:

Radio i svyaz. (in Russian).

[16] Malcev, A. I. (1970). Algorithms and Recursive Functions, Groningen: Wolters-

Noordhoff Pub.

[17] Myers, G. (1976). Software reliability: Principles and practices. New York:

Wiley.

[18] Myers, G., Sandler, C., & Badgett, T. (2011). The Art of Software Testing (3rd

ed.). New Jersey: Wiley.

[19] OKB SAPR. (2011). Personal Cryptographic Data Security Tool SHIPKA-K.

Administrator Manual. Moscow: JSC “OKB SAPR”.

[20] Sinitsyn, S.V., & Nalyutin, N.Yu. (2008). Verifikatsiya programmnogo

obespecheniya [Software Verification]. Moscow: Binom. (in Russian).

[21] Stepanchenko, I.V. (2006). Metody testirovaniya programmnogo obespecheniya

[Methods of Software Testing]. Volgograd: VSTU. (in Russian).

[22] Tamres, L. (2002). Introducing software testing. Boston: Addison-Wesley.

[23] Zhuravlyov, Y.I., Flerov, Y.A., & Vyaly, M.N. (2010). Diskretny analiz.

Formalnyie sistemy i algoritmy [Discrete Analysis. Formal Systems and

Algorithms]. Moscow: Kontakt Plus. (in Russian).

