
Verification of a Model of the Isolated Program
Environment of Subjects Using the Lamport’s

Temporal Logic of Actions
1st Andrey M. Kanner

National Research Nuclear University MEPhI
Moscow, Russia
kanner@mail.ru

2nd Tatiana M. Kanner
National Research Nuclear University MEPhI

Moscow, Russia
sheikot@mail.ru

Abstract—The paper considers a modern approach to the
creation of formal computer system security models, which
consists in describing a model in some formal language suitable
for its verification for compliance with the expected properties.
The paper provides an example of such a description in the form
of a specification of a formal model of the isolated program
environment in the language of the Lamport’s temporal logic
of actions. The specification is formed as an initial state of the
system, a list of possible further actions and a set of invariants
and temporal properties to which the system’s states must
correspond. The initial state is described by some entities that
must exist in each system implementation. The system’s actions
are given in the form of predicates of pre- and postconditions,
with some model’s variables changing in the latter. Invariants
and temporal properties are described in the form of predicates,
whose truth must be checked in each possible state of the system
or depending on the conditions occurring in previous or future
states. The paper considers the features of forming a security
model specification in TLA+ notation and verifying it using
special tools. In its conclusion, the paper describes the results
of verifying the specification of the formal model of the isolated
program environment of subjects, the existing problems and
directions for further research on this topic.

Index Terms—isolated program environment of subjects, secu-
rity model, verification, temporal logic

I. INTRODUCTION

As a rule, most of the known formal security models of
computer systems are formulated in the mathematical notation,
using a suitable mathematical apparatus. In such a case, the
basic security theorem is the main component of any formal
model, which helps to substantiate some formal properties that
guarantee security of the system or the data processed therein.
The main disadvantages of this approach are as follows:

• Complexity of describing a particular model and possible
hidden flaws in the mathematical notation or the basic
security theorem, which are difficult to identify manually.

• Detachment of the mathematical notation from real sys-
tems, where it is planned to use the security model,
as well as possible presence in such real systems of
some conditions that would affect the provisions used
in proving the basic security theorem.

• Impossibility of ensuring fulfillment of the formal prop-
erties, which theoretically guarantee system security in
all its states in practice.

Due to the aforementioned disadvantages, verification tools
are currently used to confirm the formal security properties
of a computer system, which make it possible to automat-
ically check the system security in all possible states. To
apply this approach, notation in a certain formal language is
used instead of the mathematical notation [1]–[4]. Therefore,
modern security models are often developed first in a formal
language suitable for verification, and only then, if required,
are translated into the mathematical notation. In [5], the
authors used the classical approach to describing a model
of the isolated program environment of subjects (IPES) in
form of the mathematical notation. This model is based on
the provisions of the well-known SO-model of the isolated
program environment in [6] and [7], in contrast to which, when
decomposing the system into entities, subjects will consist of
users and system services (not user processes), and objects will
consist of objects functionally associated with such subjects
(processes) and data objects with the ability to dynamically
change their composition over time. A distinctive feature of
the IPES model is inclusion of the protection subsystem as a
system entity along with other subjects of the system, and
substantiation of the impossibility of violating the current
access control rules due to the property of absolute correct-
ness (isolation) of access subjects. Such works as [8] and
[9] contain experimental research of implementing the IPES
model, which, however, do not allow guaranteeing fulfillment
of formal security properties in all possible states of the system
in practice. Other obvious problems consist in improvement
of the IPES model and the mathematical apparatus used
to describe it, as well as the associated need for repeated
experimental research. In accordance with this, the authors
decided to apply a modern approach to the development
of security models, which involves verification and testing
for implementation of security properties in practice. In this
paper, verification means not practical testing or experimental
studies, but rather formal confirmation of some properties of



the security model in all possible future states of the system.

II. MATERIALS AND METHODS

There are many approaches to modeling arbitrary systems or
algorithms used to verify their compliance with some formally
described properties [1]–[3]. The approach to verification us-
ing Lamport’s temporal logic of action (TLA, Temporal Logic
of Actions) and the Model Checking method in [10] and [11]
is one of such options, which allows, within the framework
of formal notation in the TLA+ language, to describe all
the necessary system entities and operations, as well as the
security properties of the IPES model, which are required for
verification in all its states.

Modeling in the language of Lamport’s temporal logic of
actions makes it possible to describe and further automatically
verify the systems given in the form of finite automata [12].
However, this means that when using this approach there
occur some restrictions on the possibility of verification, since
the Model Checking method does not allow to perform a
full-fledged formal verification of the system. In accordance
with this, within the framework of the TLA+ notation of
the security model, model values were introduced for some
system entities: the number of subjects and objects in [1]
and [2]. These model values are introduced to ensure that
the verification process may be completed and at the same
time the modeled system itself is not significantly restricted.
So, in the TLA+ notation, two more user subjects and one
system subject may simultaneously exist along with s0 system
subject (the operating system kernel) and ssorm access control
subsystem. In a state when all of the listed subjects are
active, they may have one associated process object and, in
addition, several objects associated or not associated with
access subjects may be created. An increase in the given model
values of the number of possible subjects or objects will not
affect the modeled system, but will significantly increase the
verification time, the number of possible states and system
implementations.

In the IPES model, the initial state of each system imple-
mentation is assumed to have only s0 system subject, which
is required for its further functioning. The initial state of the
model in the TLA+ notation is shown in Fig. 1.

The following elements of the IPES model are the variable
vars entities of the system corresponding to Fig. 2:

• Set of active subjects (Sactive);
• Set of functionally associated objects (Ofunc);

Fig. 1. Initialization of the IPES model.

Fig. 2. Variables of the IPES model.

• Set of associated data objects (Odata);
• Set of unassociated objects (Ona);
• Set of both active and inactive subjects (S);
• Sequence of the queries sent to the system (Q).

The following queries of the IPES model may be
made as further actions in the system: CreateProcessD,
DeleteProcessD, CreateUserD, CreateShadowD,
DeleteSubjectD, ExecD, ReadD, WriteD, CreateD,
DeleteD, corresponding to standard operations in the
operating system. Each action is described using pre- and
postconditions for its implementation, for example, as for the
CreateProcessD query in Fig. 3. Preconditions represent
the predicates that must be met to perform an action.
Postconditions determine how the model variables change
upon performance of the action, that is, what new state the
system will have.

Fig. 3. Post- and preconditions for a query to create functionally associated
objects (processes).



Thus, the Spec specification of the IPES model in the TLA+
notation presented in Fig. 4 must determine the initial state of
the system and a list of possible further actions (operations or
queries to the system).

Invariants (security properties) and temporal properties writ-
ten as predicates are used in the specification as system
security properties. The invariants must be met in all states and
for each system implementation, and they also can, by using
the Q sequence of queries to the system, check the conditions
occurred in the past, for example, during the last system
transition. Temporal properties, in contrast to invariants, can
use special temporal TLA+ operators [1], [2], [10], [11], which
help to compose predicates depending on the execution time
and certain events in the past or future.

The first part of the invariants of the IPES model specifi-
cation is introduced in the TLA+ notations to control whether
operations are described correctly in each possible state: to
control the types of model variables (TypeInv), to control
consistency of the sets of objects associated and not asso-
ciated with the subjects and uniqueness of system entities
(ConsistencyInv), to control blocking of unregistered access
subjects (BlockedInv) and to control system performance
(continuous presence of s0 subject in the OSKernelExists
invariant).

The second part of the invariants is introduced in the TLA+
notation to check security properties of the IPES model [5] in
each possible state: to control activation of the access control
subsystem (SormInits), to check the correctness property of
the system subjects (Correctness), to check the new property
of the subject’s absolute correctness in the opposite sense
(AbsCorrectnessOpp). The subject’s correctness property is
shown in Fig. 5 and presupposes that it is impossible to change
the associated objects of another access subject. In modern
systems, this property is partially achieved by using virtual
address spaces of processes and restrictions on inter-process
interaction.

The property of subject absolute correctness in the opposite
sense is shown in Fig. 6, and introduced in the opposite way
in comparison with the absolute correctness property (in the
direct sense) [5]. The essence of this property is that you may
not make queries to the system to read objects that have been
changed by other access subjects.

This property is introduced in the IPES model, since it is
often problematic in practice to check events in the future,
while checks of past system states (for example, a violation
of access object integrity) are easily implemented in practice.
Therefore, the absolute correctness property of subjects of the

Fig. 4. Specification of the IPES model.

Fig. 5. Invariant used to check the correctness property of access subjects.

Fig. 6. Invariant used to check the absolute correctness property of subjects
in the opposite sense.

IPES model (in the direct sense) is presented in the form
of AbsCorrectness temporal property in the TLA+ notation
in Fig. 7. It checks the conditions related to future accesses,
which may not be checked within the TLA+ invariants or in
the pre- or postcondition predicates for queries to the system.
The essence of this property is that you may not write in the
objects that will become associated with other access subjects
in future system states.

The possibility of using the system is also expressed in
the form of OSUsabilityLiveness temporal property, which
means that one more entity will be generated in any system
implementation along with s0 and ssorm subjects: a user or a
system subject.

All system operations include special SormCheckSubj
and SormCheckPerm checks, which first of all check
whether the access control subsystem has been initialized
using SormInitialized macro, and only then perform the
checks required to fulfill the correctness properties of the IPES
model.

Verification of the described specification with respect to
the given invariants and temporal properties allows us to assert
automatic proof of the theorem in the TLA+ notation shown
in Fig. 8, which confirms fulfillment of security requirements
for all possible states and system implementations.



Fig. 7. Temporal property used to check the absolute correctness property of
subjects.

Fig. 8. The theorem checked during verification of the security model
specification.

III. RESULTS AND DISCUSSION

When forming the TLA+ notation of the IPES model, the
authors encountered the following features that should be
noted.

Some variables and entities of the model specification
do not need to be implemented in practice. Such entities
include Q sequence of queries, which is an auxiliary (history)
variable [13] and is used only to check invariants or temporal
properties, which are not implemented in practice as well.

In the above TLA+ notation, Q history variable is a se-
quence, not a set, since this is the order of the performed
actions and not only the fact of their presence in the past,
which is important in the IPES model. History variables must
be used with care, especially when using temporal TLA+
operators. This is connected with the fact that some system
entities may stop to exist in it by the time of execution of
temporal operators. Moreover, instead of a certain value of
the history variable, you can mistakenly check its current
value at the time when the temporal property is executed. In
addition, the temporal properties themselves, in contrast to
the invariants, can be executed too long when working with
complex or long values of history variables.

In the TLA+ notation, in contrast to the mathematical
notation, it is not needed to reflect entities such as the set of all
states or implementations of the system. These entities arise
only during the verification process using the Model Checking
method – during the verification, all possible sequences of
states and queries of the system are generated, taking into
account the restrictions and model values.

In the model specification, we had to reduce the number
of stuttering states by introducing the temporal assumption
TemporalAssumption = WFvars(Next), which ensures
the Weak Fairness [10]. In this case the model does not
include any unnecessary states and implementations in which
the system does nothing – the so-called stuttering states. If
it is possible to perform any action in the system, it must
be performed. Otherwise, such a system implementation may
arise during verification, in which it would be impossible to
generate users yielding violation of OSUsabilityLiveness
temporal property. The requirements for system termination
are not considered in the model, therefore the verification
ends only when the tools go through all possible states of
the system, and all new states begin to repeat the previous
ones.

The verification of the developed specification of the IPES
model was carried out using TLC2 v2.15 tool on a computer
running under Intel Core i5−9400 (3.80 GHz) and having 16
GB RAM in 64-bit Linux OS with v5.4.38 kernel. The verifi-
cation took 20 hours 25 minutes using 6 separate streams, with
the total number of analyzed states amounting to 124299849.

The above verification allowed to do as follows:
• To check fulfillment of the required security properties in

all possible states and implementations of the system in
order to justify the impossibility of violating the access
control policy acting in the system;

• To confirm identity of such security properties of the
IPES model as the absolute correctness of subjects in
the direct and opposite sense;

• To describe specific access rules given in the form
of SormCheckSubj and SormCheckPerm predicates,
which, when introduced, allow the required security prop-
erties to be implemented in the system.

The full text of the developed specification of the IPES
model is available on the author’s website1.

IV. CONCLUSION

Use of a modern approach for describing security models in
a certain formal language suitable for verification has a number
of advantages in comparison to the classical approach, which
supposes description in the mathematical notation. The main
advantage is the ability to quickly find hidden errors at an early
stage of creation of a security model, since security invariants
can be created as long as the basic operations of the model
are described. Moreover, it is not required to involve highly
qualified specialists in the verification of the main provisions
of the model, since fulfillment of the expected properties can
be checked automatically.

Nevertheless, modeling in formal languages suitable for
verification cannot fully eliminate possible errors and all
the shortcomings of the classical approach specified in the
introduction. The difference is that such shortcomings can
be quickly detected and corrected, while there is no need
to simultaneously correct several notations at once – the

1https://github.com/kanner/ipes-model



mathematical one and one in a formal language for verifi-
cation. Another difficult task is to substantiate compliance
of the formal model with its implementation in the program
code. According to the sources known to the authors, tools
for automatic generation of a model specifications from the
program code or, conversely, generation of a source code for a
given formal model specification are still under development.
There are only particular solutions within the framework of
academic research [14].

This work can be developed further by adding concurrency
and multiprocessing in the security specification. This is
needed to better correspond to real systems, where several
operations can be performed at once in one unit of time,
and the threshold between the earlier and the later operations
is blurred. In the current implementation, the IPES model
specification is simplified – only one query is executed per one
time unit, and 1 or 2 subjects and 2 or 1 system objects are
involved, respectively. The second direction for development
can consist in a transition from the Model Checking method
to use of deductive verification using TLAPS or Izabelle tools,
as well as other SMT solvers.

REFERENCES

[1] A.V. Kozachok, “TLA+ based access control model specification”,
Proceedings of the Institute for System Programming of the RAS, 2018,
vol. 30(5), pp. 147–162, DOI: https://doi.org/10.15514/ISPRAS-2018-
30%285%29-9.

[2] A.V. Kozachok, “Specifikatsiya modeli upravleniya dostupom k
raznokategoriynym ustroistvam kompyuternykh sistem”, Voprosy kiber-
bezopasnosti, 2018, vol. 4(28), pp. 2–8. (In Russ.)

[3] P.N. Devyanin [et al.], Modelirovaniye i verifikatsiya politik bezopas-
nosti upravleniya dostupom v operatsionnykh sistemakh, Moscow: Gory-
achaya liniya – Telekom, 2019. (In Russ.)

[4] G. Klein [et al.], “seL4: formal verification of an OS
kernel”, Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, 2009, pp. 207–220, DOI:
https://doi.org/10.1145/1629575.1629596.

[5] A.M. Kanner, “Correctness of data security tools for protection against
unauthorized access and their interaction in GNU/Linux”, Global Journal
of Pure and Applied Mathematics, 2016, vol. 12(3), pp. 2479–2501.

[6] A.Yu. Scherbakov, Sovremennaya kompyuternaya bezopasnost’. Teo-
reticheskiye osnovy. Prakticheskiye aspekty, Moscow: Knizhny mir,
2009. (In Russ.)

[7] A.Yu. Scherbakov, Khrestomatiya spetsialista po sovremennoy infor-
matsionnoy bezopasnosti, vol. 1. Saarbrucken: Palmarium Academic
Publishing, 2016. (In Russ.)

[8] A.M. Kanner, “Experimental research of access control in Linux operat-
ing system”, Information and Security, 2017, vol. 20 (4), pp. 604–609.
(In Russ.)

[9] A.M. Kanner, “The effectiveness of implemented security features
against unauthorized access in Linux operating systems”, Information
security questions, 2017, no. 2, pp. 3–8. (In Russ.)

[10] L. Lamport, “The temporal logic of actions”, ACM Trans.
Program. Lang. Syst., 1994, vol. 16(3), pp. 872–923, DOI:
http://doi.acm.org/10.1145/177492.177726.

[11] L. Lamport, J. Matthews, M. Tuttle, Y. Yu, “Specifying and verifying
systems with TLA+”, Proceedings of the ACM SIGOPS 10th workshop,
2002, pp. 45–48, DOI: https://doi.org/10.1145/1133373.1133382.

[12] A.M. Kanner, T.M. Kanner, “Testing software and hardware data
security tools using the automata theory and the graph theory”,
Proceedings of Ural Symposium on Biomedical Engineering, Radio-
electronics and Information Technology, 2020, pp. 615–618, DOI:
https://doi.org/10.1109/USBEREIT48449.2020.9117757.

[13] L. Lamport, S. Merz, “Auxiliary variables in TLA+”, arxiv.org preprint:
1703.05121, 2017, URL: https://arxiv.org/pdf/1703.05121.pdf.

[14] A. Methni , M. Lemerre, B.B. Hedia, S. Haddad, K. Barkaoui, “Spec-
ifying and verifying concurrent C programs with TLA+”, Interna-
tional Workshop on Formal Techniques for Safety-Critical Systems,
Springer, Cham, 2014, pp. 206–222, DOI: https://doi.org/10.1007/978-
3-319-17581-2 14.


