
Verifying Security Properties of the Source Code of
Access Control Tools Using Frama-C

1st Andrey M. Kanner
Department of Cryptology and Cyber Security (42)

National Research Nuclear University MEPhI
Moscow, Russia
kanner@mail.ru

2nd Tatiana M. Kanner
Department of Cryptology and Cyber Security (42)

National Research Nuclear University MEPhI
Moscow, Russia
sheikot@mail.ru

Abstract—The paper discusses the features of the approach
most commonly used to verify access control tools, where a
high-level specification (security model) is generated. Serious
problems are revealed in the applied approach, since there is a
discrepancy between the object being verified and the real object
requiring verification. As an alternative approach to verifying
access control tools, it is proposed to verify security properties at
the source code level, for example, for ANCI C code using Frama-
C and special theorem provers. The paper considers the features
of the Frama-C core, plug-ins and theorem provers. Using a
synthetic example of a system, where subject-object interaction
is arranged within the Bell-LaPadula Model, a possibility is
demonstrated to generate the properties of a security model in
the form of low-level contracts for several functions. A possibility
of forming new function conditions by analyzing covert channels
for the Bell-LaPadula mandate policy is demonstrated, taking
into account the hierarchical structure of the system objects, as
well as the corresponding change in the source code to meet
the new conditions. In conclusion, the advantages of verifying
access control tools at the source code level in comparison with
the previously used approach are given. The features are listed
that arise in case of a change in the source code and in case of
verifying access control tools using standard library functions. A
possible direction is proposed for further research on dynamic
verification of the source code of access control tools.

Index Terms—verification, access control tools, security prop-
erties, Frama-C

I. INTRODUCTION

As a rule, access control tools implement a certain security
model in practice [1] (Take-Grant, Bell-LaPadula, etc.) and,
accordingly, can ensure implementation of formal security
properties in the target system. However, in order to implement
theoretical security properties, it is required to justify confor-
mity of access control implementation to a particular model.
To justify such conformity, access control tools are usually
(formally) verified using special tools.

In the Russian Federation, like in other countries, access
control tools are verified at the moment they are certified
for compliance with the requirements of regulatory documents
governing information security [2]. Despite the fact that the
processes of modeling and verifying access control tools will
soon become standardized, at the moment there is no single
approach to their implementation.

In [3], [4] the authors described one of the approaches to the
verification of access control tools using Lamport’s Temporal

Logic of Actions (TLA) and the Model Checking method [5],
[6]. In this approach, a high-level specification is compiled
from the source code of the access control tool in a formal
language suitable for verification, and such a specification is
further verified for compliance with security properties. Based
on the results of such verification, however, it is only possible
to confirm that such a specification of the access control tool
meets the given security properties. However, an important fact
overlooked is the need to substantiate the conformity of the
specification to the source code; otherwise the access control
tool may not be deemed as complying with the given security
properties.

Unfortunately, a similar approach is now used everywhere –
each access control tools manufacturer creates its own specifi-
cation (security model); testing laboratories and government
certification agencies somehow check such a specification
and confirm that successful verification of such a security
model implies compliance of the access control tool with the
generated security properties. In fact, however, the source code
of the access control tool is not analyzed in this process, and
its compliance with the specification is shown only informally.

In most cases, a high-level system specification does not
cover all the implementation nuances of a large source code,
since the system is simplified and entities are abstracted to a
level at which it is convenient to describe security properties.
As a result, using such an approach, an entity is verified, other
than that very entity, which really requires verification, but
only some derivative thereof.

Thus, it seems logical to verify not some derived specifica-
tion of the access control tool, but exactly its source code. In
practice, testing laboratories analyze source code using static
analyzers and heuristic tools that find only a fixed set of source
code flaws (incorrect memory handling, errors in arithmetic
operations, etc.) and are unable to substantiate the complete
absence of errors.

However, in addition to static analyzers, there are more
advanced static analysis tools for the source code of various
programming languages, such as Frama-C1 for ANCI C [7]–
[9], which allow to use special provers to prove that the code
conforms to some properties described in its specification.

1https://frama-c.com/



Such properties can include various conditions that must be
met by the source code or its components (functions):

• functional properties – to check the correctness of func-
tions in accordance with their specifications;

• safety properties – to check and make sure that the func-
tions and the program will not fail (undefined behavior,
etc.);

• termination – to check the work termination process (at
the moment when it is supposed to be).

Within this paper, it is proposed to consider a possibility
of verifying security properties of the source code of access
control tools using Frama-C.

II. MATERIALS AND METHODS

Frama-C allows generating special comments to source code
functions with a specification (contract of the function) –
Hoare style pre- and postconditions, invariants (loop invariants,
etc) [8], [9].

The Frama-C core parses the source code and each function
contracts generating an intermediate representation with an
ACSL functional specification (ANSI/ISO C Specification
Language, specifying behavioral properties of C source code),
from which an abstract syntax tree (AST) with ACSL anno-
tations is subsequently generated. Such annotations contain
verification conditions (VC), which are passed to special
provers that check their validity. Based on the results of the
work of such provers, a conclusion is made about compliance
of the function implementation with its contract and the formal
evidence of the source code correctness in terms of its compli-
ance with the functional specification. Frama-C supports many
plug-ins for various purposes of source code analysis [8], [9]:

• Eva – for abstract interpretation and value analysis;
• WP – for functional verification;
• E-ACSL – for runtime verification;
• MetACSL – for expressing high-level properties;
• SecureFlow – for information flow analysis;
• etc.
Moreover, using Frama-C, it is possible to use various

provers by using the Why32 platform – Alt-Ergo, Z3, etc.
Initially, it may seem that only a low-level specification may

be described in ACSL, that is, only some low-level properties
for individual functions of the source code may be verified,
without a possibility to verify high-level properties of some
security model. However, security properties such as the Bell-
LaPadula mandate policy rules may also be described at the
specification level for several source code functions.

Let us consider a system consisting of subjects and objects
using a synthetic ANCI C example, where subjects can per-
form read, write and create operations in relation to objects –
Fig. 1.

In such a system, for the read, write, and create operations,
we can implement the corresponding simplified restrictions
mand access read and mand access write (Fig. 2) within the
Bell-LaPadula mandate policy, after which we will need to

2http://why3.lri.fr

Fig. 1. A prototype of a system of abstract subjects and objects with read,
write and create operations.

Fig. 2. Mandate access control policy restrictions for system operations.

verify compliance of the read, write, and create functions with
this policy.

For verification purposes, it is required to create contracts
for the read, write, create functions – Fig. 3.

Verification of such contracts using Frama-C (EVA/WP
plug-in with the Alt-Ergo prover) will be successful. However,
covert channel are often analyzed in case of the mandate
security policy verification. Within such an analysis, the hi-
erarchical structure of system objects (for example, the OS
file system) can be taken into account. A classic example
of a covert leakage channel for the Bell-LaPadula model is
information leakage through the names of nested objects (if it
is possible to create objects of a higher level of confidentiality
in containers). If we add hierarchical logic to the system under
consideration for objects and the create operation, as well as
a new condition for the create operation contract in Fig. 4,
verification will end in an error, as shown in Fig. 5.

To correct verification errors in a system with hierarchical

Fig. 3. Write function contract within the mandate access control policy.



Fig. 4. Contract of the create function with the new conditions for hierarchical
objects.

Fig. 5. Create function verification error arisen as a result of using incorrect
rules when creating objects in containers.

logic, it is required to change the restriction for the create
operation to mand access create – Fig. 6, after which the
verification of function contracts will be successful – Fig. 7.

The above synthetic example is based on the source code
of a real access control tool analyzed by the authors in [3],
[4].

III. RESULTS AND DISCUSSION

The paper is devoted to the approach to verifying security
properties of access control tools at the source code level.
Within such an approach, instead of creating a high-level
specification independent of any source code, comments are
added to some functions with their formal specification, which
are used during the verification by Frama-C.

Such an approach to verifying access control tools allows
to:

Fig. 6. Modified restriction for the create function which takes into account
hierarchical logic.

Fig. 7. Successful verification of the create function with modified restriction.

• Reduce the number of entities to be analyzed (certified)
– instead of the source code and formal notation, only
the source code with additional comments is used.

• Eliminate the need to justify the conformity of the source
code to a certain formal notation.

• Eliminate the need to change a certain formal notation
when changing the source code.

The proposed approach requires generation of a (low-level)
specification at the source code function level. However, in
such a case there will be no problems with modifying the
source code, since in case of a discrepancy between the source
code and the specification the verification process will end in
an error. Function specifications must either change along with
the source code change, or be corrected at the moment of the
next verification.

In addition, when using Frama-C, one can additionally
verify the absence of typical errors (memory leaks, buffer
overflows, etc.) at the source code level, at a new qualitative



level if compared to static analyzers.
When verifying, it is also necessary to take into account

that access control tools usually use many standard library
functions in their source code that can affect the result of
their work. But thanks to the works of other authors [10],
such functions have already been verified, so when verifying
access control tools, it is possible to only check the correct
operation of security functions.

Moreover, it is worth highlighting the dynamic verification
capability of Frama-C (E-ACSL) [11]. When generating func-
tion specification, errors can occur that are difficult to detect in
static analysis. In case of dynamic verification, special assert
instructions are added to the source files during their assembly,
which are triggered when the specification is violated. Thus,
when the first violation is detected during dynamic verification,
it becomes possible to identify and correct specification errors.
Further research is expected to be done on this topic.

REFERENCES

[1] J. McLean, R.R. Schell, D.L. Brinkley, “Security mod-
els,” In Encyclopedia of Software Engineering, 2002,
DOI:https://doi.org/10.1002/0471028959.sof297.

[2] International organization for standardization “ISO/IEC 15408-3. In-
formation technology security techniques – Evaluation criteria for IT
security – Part 3: Security assurance components,” 2008.

[3] A.M. Kanner, T.M. Kanner, “Verification of a model of
the isolated program environment of subjects using the
Lamport’s temporal logic of actions,” Proceedings of the VII
Engineering & Telecommunication Conference, 2020, pp. 1–5,
DOI:https://doi.org/10.1109/EnT50437.2020.9431263.

[4] A.M. Kanner, T.M. Kanner, “Special features of TLA+ tempo-
ral logic of actions for verifying access control policies,” Pro-
ceedings of Ural Symposium on Biomedical Engineering, Radio-
electronics and Information Technology, 2021, pp. 411–414, DOI:
https://doi.org/10.1109/USBEREIT51232.2021.9455090.

[5] A.V. Kozachok, “TLA+ based access control model specification,”
Proceedings of the Institute for System Programming of the RAS, vol.
30(5), 2018, pp. 147–162, DOI:https://doi.org/10.15514/ISPRAS-2018-
30%285%29-9.

[6] L. Lamport, “The temporal logic of actions,” ACM Trans.
Program. Lang. Syst., vol. 16(3), 1994, pp. 872–923,
DOI:http://doi.acm.org/10.1145/177492.177726.

[7] F. Kirchner, et. al, “Frama-C, a software analysis perspective,”
In Formal Aspects of Computing, vol. 27(3), 2015, pp. 573–609,
DOI:https://doi.org/10.1007/s00165-014-0326-7.

[8] N. Kosmatov, J. Signoles, “Frama-C, a collaborative framework
for C code verification: tutorial synopsis,” In International
Conference on Runtime Verification, 2016, pp 92–115,
DOI:https://doi.org/10.1007%2F978-3-319-46982-9 7.

[9] J. Signoles, “The Frama-C framework and some applications to code
security,“ Lecture Notes in Cyber in Saclay, 2021.

[10] D. Efremov, M. Mandrykin, A. Khoroshilov, “Deductive verification of
unmodified Linux kernel library functions,” In International Symposium
on Leveraging Applications of Formal Methods, 2018, pp. 216–234,
DOI:https://doi.org/10.1007/978-3-030-03421-4 15.

[11] K. Vorobyov, N. Kosmatov, J. Signoles, “Detection of security
vulnerabilities in C code using runtime verification,” In Inter-
national Conference on Tests and Proofs, 2018, pp. 139–156,
DOI:https://doi.org/10.1007/978-3-319-92994-1 8.


