
Special Features of TLA+ Temporal Logic of
Actions for Verifying Access Control Policies

1st Andrey M. Kanner
Department of Cryptology and Cyber Security (42)

National Research Nuclear University MEPhI
Moscow, Russia
kanner@mail.ru

2nd Tatiana M. Kanner
Department of Cryptology and Cyber Security (42)

National Research Nuclear University MEPhI
Moscow, Russia
sheikot@mail.ru

Abstract—The paper considers special features of applying
Lamport’s temporal logic of actions when verifying access control
policies for arbitrary data protection tools. It justifies the neces-
sity of implementing verification in the process of development
and certification of various software tools and algorithms, in
particular, policies for controlling subjects’ access to objects. It
contains a general structure of notation or specification of the
system being studied in a formal language suitable for verifica-
tion, and its particular version in the TLA+ language. The paper
considers special features of using Lamport’s temporal logic of
actions, and gives recommendations regarding dos and don’ts
when initializing the modeled system, when forming and using
invariants or temporal properties, history and auxiliary variables,
safety and liveness properties, as well as when accounting for
the termination of the verification process. Such features and
recommendations are formulated in a quite universal way and
do not depend on the applied verification approach and on
the system being studied. The paper lists typical errors that
may be done during verification, which make its results useless,
while artificially creating a feeling of confidence in the system’s
“rightness”, “correctness” or “security / safety”. The conclusion
presents key features that can have a significant impact on
verification results, as well as on feasibility of its implementation.
It proposes one of the possible directions for further research
on the development of a general approach to substantiating
conformity of the verified system specification in some formal
language with its practical implementation.

Index Terms—verification, temporal logic of actions, auxil-
iary variables, history variables, invariants, temporal properties,
safety properties, liveness properties

I. INTRODUCTION

Verification of access control policies for arbitrary tools of
data protection against unauthorized access is an extremely
useful step in their development or certification.

Within this paper, verification means not just testing and
practical confirmation of any properties in an arbitrary system
in the course of experimental research, but formal justification
for the implementation of such features in all states of the
system, which is rather difficult to do manually. To perform
the verification, special tools are used that allow to automat-
ically check the truth of formal properties for the algorithms
implemented in the modeled system, depending on various
conditions and at various time intervals (in the past, present
and future).

There are various approaches to modeling and verification
and the relevant tools [1]–[3]. However, regardless of the

chosen approach, the system or the algorithm being studied
must be first presented in the form of a notation or specification
in some formal language (often using logical predicates),
which describes:

1) Initial state of the system or algorithm (initialization).
2) Variables of the model or algorithm – the entities that

can change in the course of work.
3) Operating rules for the system or algorithm (possible

states and values of model variables, rules for transition
from one state to another – for example, when subjects
access objects).

The main advantage of verification over testing or exper-
imental research is that it becomes possible to quickly find
errors in the design or implementation of the modeled system.
When testing, there is a high probability of missing some
hidden corner cases. Verification tools automatically analyze
any possible sequence of states, checking the necessary formal
properties of the system in each of them. The ability to
quickly detect design or implementation errors is especially
important for data protection tools that would enhance, rather
than weaken, security of the system where they are applied.

In accordance with the international regulatory documents
[4] and, for example, some current regulatory documents of
the Russian Federation, verification is a necessary develop-
ment stage only for some classes of data protection tools.
Nevertheless, it is desirable to perform verification for any
data protection tools, regardless of the security class of the
systems where they are applied (and, possibly, for all software
tools and algorithms used). This is due to the fact that only
verification makes it possible to assert correctness of certain
algorithms or talk about execution of any formal properties in
the system, including its security (from the point of view of
the applied formal security model).

This paper summarizes and details some of the features of
access control policy verification encountered by the authors
when using one of the approaches to verification – Lamport’s
temporal logic of actions (TLA) and the Model Checking [5],
[6] in relation to access control tools described in [7], [8]1.
Further material in the paper refers to formal notations in the

1The full text of one of the developed TLA+ specification is available on
the author’s website https://github.com/kanner/ipes-model



Fig. 1. Initial state of the system, describing variables – active and inactive
access subjects, available access objects, sequence of accesses.

Fig. 2. Spec specification of the system described as the Init state and the
possible Next actions that change the vars.

TLA+ language, however this may be considered as a general
description without reference to any specific security models,
access control tools or any specific approach to verification.

II. MATERIALS AND METHODS

When using TLA+ and the Model Checking method, the
simplest specification of an arbitrary system Spec must contain
the following elements [7], [8]:

1) Variables of the model (vars), for example, a set of
objects and subjects of access.

2) Initial state of the system (Init), described as a predicate
with the initialization of model variables, an example of
which is shown in Fig. 1 [8].

3) Possible actions of the system (Next), described in the
form of predicates of pre- and post-conditions for its
execution, for example, the conditions needed for read
access and the results of such access.

4) A theorem that is proved during verification and that
checks special predicates (formal properties of the sys-
tem) – invariants and temporal properties [5], [6].

An example of the simplest specification is shown in Fig. 2
The first verification feature is the need to correctly choose

the initial state and model variables that allow describing the
states of the system. In fact, the whole further verification
process and correctness of the modeled system will depend
on this choice. Lamport’s temporal logic of actions and the
Model Checking method make it possible to verify only those
systems that are given in the form of finite state automata [7],
[8], that is, the Model Checking method can only terminate
when there are no more new, reachable and unexamined states
of the system. On the one hand, this greatly limits the value
of applying this verification approach for arbitrary systems,
since it seems that verification results cannot guarantee ex-
ecution of the same formal properties for any such system
(for example, with a significantly larger number of access
subjects and objects). On the other hand, this approach is a

kind of implementation of justification for the “induction step”,
meaning that if the modeled system’s formal properties cannot
change in the case of its expansion, the same properties will
retain for an arbitrarily large system (using the mathematical
induction method, verification can be performed first for a
system having one subject, and then for a system having n and
n+1 subjects). The problem of the most modern verification
tools is that the user considers the choice of the initial state
and model variables as not a really significant step, which can
be done unconsciously. However, if this stage is performed
incorrectly, correctness and objectivity of the entire further
verification process cannot be considered reliable.

To restrict the modeled system, that is, to create a finite
space of its states, TLA+ uses model values for some system
entities (vars), for example, for subjects, objects, users. With
an increase in the number of model values, the number of
system states can grow exponentially and, accordingly, the
verification time will also increase exponentially.

Therefore, it is desirable to choose the minimum necessary
variables of the modeled system specification for verification
purposes, whose increase can’t result in a change in the
system’s behavior (invariants and temporal properties will not
be violated). For example, if the specification takes into ac-
count the possibility of simultaneous existence of two equally
privileged system access subjects (s 3 and s 4 in Fig. 1), the
system’s behavior within the described specification is likely to
remain the same for 4–10 or more users. On the other hand, in
such a case, it is not recommended to limit the model values by
only one access subject (s 3), since the behavior of the system
specification and the truth of the predicates of formal security
properties can change when several access subjects work
simultaneously (for example, hidden data leakage channels can
appear).

Formal properties of the system in TLA+ are represented
by invariants and temporal properties. Truth of the invariants
is checked in all states and for each implementation of the
system; the predicate is compiled for the current state, and
truth is checked sequentially in each state. Temporal properties
are more complex predicates that can use special temporal
operators [1], [5], [6], allowing to take into account the time
factor, for example:

• [ ]P means that P is true for all states (an analog of the
invariant, but without optimization by verification tools);

• <> P means that for every possible implementation, at
least one state has P as true;

• P ∼> Q implies that if P ever becomes true, at some
point afterwards Q must be true;

• <> [ ]P says that at some point P becomes true and
then stays true.

In accordance therewith, the second feature of verification
via TLA+ is the need to use predominantly invariants rather
than temporal properties as formal properties of the system.
This is due to the fact that when checking temporal properties
during verification, a huge number of previous or future
states can be analyzed, which can lead to impossibility of
completing the verification process. Moreover, according to



Fig. 3. Predicate of the temporal property of the TLA+ notation, containing
an error in using a history variable.

[9], when using some combinations of temporal operators, a
so-called state explosion can occur, for example, when using
the predicate ∼ (P ∼> Q).

If it is impossible to do only with invariants in the spec-
ification, try using auxiliary or history variables [10]. Thus,
Fig. 1 shows that a Q sequence of all accesses is used as one
of the model variables. In fact, this variable is not used in
the model specification and is not implemented in practice in
access control policies. The only purpose of this variable is
to provide a possibility, within the framework of invariants, to
check events that occurred in the past (for example, whether a
write access was provided to an access object which is being
read in the current state, or whether this access object was
read in a previous state before execution access was granted).
Temporal properties must be used only in cases where it is
not enough to use only invariants or invariants with auxiliary
variables.

The third feature is related to how auxiliary variables can
be applied, as well as how to develop conditions in temporal
properties. In Fig. 1, the Q historical variable is a Sequence,
since it is sometimes required to analyze the order of system
transitions for some formal properties of the applied security
model. In the absence of such a need, a Set can be used as Q,
but in this case only the fact of certain transitions of the system
in the past without their order will be taken into account.

In addition, history variables must be carefully used in
conjunction with TLA+ temporal operators. At the when
temporal operators are executed, predicates for entities that
do not exist in the system can be checked, and the value of
the history variable may not correspond to the required state
of the system, as, for example, in Fig. 3.

Fig. 3 shows the SelectPrevQuery macro, which selects
the last access query executed in the system. Further, in the
temporal property predicate, obj entity is selected, which will
be accessed in the current state of the system. If obj is an
object and is being read, there must be no write access to this
object in any future states. In the next-to-last line of Fig. 3,
there is an error due to specific features of the TLA+ language

– the SelectPrevQuery macro will be deployed in such a
case for the state in which the temporal property is checked,
with obj also deployed for the current state (the predicate will
always have the FALSE value). In such comparisons, it must
be also taken into account that there can be no obj entity in the
system during the temporal property test, and the comparison
with obj may either be false or generate an error. Even if
the object is deleted and a complete copy is created, the new
obj structure will not be comparable to the same structure
before deletion. To fix the situation in such a case, one can
number and use identifiers for access objects, as in Fig. 3 in
the comments. Moreover, instead of checking query types, one
can change the object’s state field, for example, after accessing
it for writing.

Most often, invariants and temporal properties are used in
order to form the safety properties of the TLA+ notation, that
is, to check that nothing bad will happen when the system
runs [9]. However, liveness properties of TLA+ are no less
important, that is, checking that the system is functioning
and that the expected actions are taking place therein [9]. In
accordance therewith, the fourth verification feature can be
formulated as follows – it is necessary to form both safety
and liveness properties in the form of invariants or temporal
properties. In [8], the authors managed to identify several
errors in the TLA+ notation, which resulted in the following
gaps:

1) The system stopped functioning, since the last system
process that could generate other subjects and users
ceased to work.

2) The system ceased to be manageable, since all admin-
istrator users were blocked in it.

Such errors could be eliminated by establishing the ap-
propriate liveness invariants and correcting the predicates of
system actions that lead to their violation.

The last, fifth feature identified by the authors is the ability
to take into account finiteness of the work, which is called
termination in the TLA+ notation [9], as well as performance
of the modeled system over time. For many algorithms and
systems, it is important to check completion of their work in
some state. But the Spec model specification in Fig. 2 describes
a system that can operate indefinitely, which can be detected
using a special option of verification tools. The reason for this
is the stuttering states of TLA+ – the system states where it is
idle, that is, it does not perform any actions. Such states can
become a problem for some liveness properties, since there
may arise system implementations, where, for example, no
user will ever start working or the access control subsystem
will never be activated.

If it is supposed to exclude stuttering states from the model,
one can use special temporal assumptions during initialization,
for example, TemporalAssumption in Fig. 4.

Such a temporal assumption provides the Weak Fairness
property of the modeled system [5] – if it is possible to
perform any action in the system, it must be performed.



Fig. 4. Spec specification of the system with a temporal property for excluding
stuttering states.

III. RESULTS AND DISCUSSION

The paper describes special features of the TLA+ temporal
logic of actions for verifying access control policies. It gives
recommendations for taking these features into account in the
verification process. It also specifies possible errors that may
occur when verifying arbitrary data protection tools.

One of the most important features is the need to correctly
select the initial state of the system and model variables. In
the case of an inadequate choice, verification will have no
sense in practice, since the “induction step” required to execute
formal properties of the system in all possible states will be
unreasonable.

In addition to those considered, it is important to take
into account one more general key feature for various ap-
proaches to verification – the need to select specific formal
properties that require justification. Such properties must cover
the verification tasks and directly result in some system
characteristics (for example, impossibility of information flows
from objects with a high confidentiality level to objects with
a low confidentiality level). Otherwise, verification will be
useless, since it will only create a false impression of system
“rightness”, “correctness” or “security/safety”, which cannot
be its objective characteristic.

It is important to note that a subtle point of the verification
process is the need to substantiate correspondence of the high-
level description of the modeled system in a formal language
suitable for verification to the real system. A short system
specification cannot completely cover all the nuances of its
implementation described in long source codes. During veri-
fication, the system is often simplified, which is subsequently
not taken into account when checking formal properties. In
this regard, even is using modern tools, it is possible to verify
a model that does not correspond to the system implemented
in practice. Further research should be done on this topic.

REFERENCES

[1] A.V. Kozachok, “TLA+ based access control model specification,”
Proceedings of the Institute for System Programming of the RAS, vol.
30(5), 2018, pp. 147–162, DOI:https://doi.org/10.15514/ISPRAS-2018-
30%285%29-9.

[2] P.N. Devyanin, A.V. Khoroshilov, V.V Kuliamin, A.K. Petrenko
and I.V. Shchepetkov “Formal Verification of OS Security Model
with Alloy and Event-B,” Lecture Notes in Computer Science,
vol. 8477. Springer-Verlag: Berlin/Heidelberg, 2014, pp. 309–313,
DOI:https://doi.org/10.1007/978-3-662-43652-3 30.

[3] G. Klein [et al.], “SeL4: formal verification of an OS kernel,” Proceed-
ings of the ACM SIGOPS 22nd symposium on Operating systems princi-
ples, 2009, pp. 207–220, DOI:https://doi.org/10.1145/1629575.1629596.

[4] International Organization for Standardization “ISO/IEC 15408-3. In-
formation technology Security techniques – Evaluation criteria for IT
security – Part 3: Security assurance components”, 2008.

[5] L. Lamport, “The temporal logic of actions,” ACM Trans.
Program. Lang. Syst., vol. 16(3), 1994, pp. 872–923,
DOI:http://doi.acm.org/10.1145/177492.177726.

[6] L. Lamport, J. Matthews, M. Tuttle, and Y. Yu, “Specifying and verifying
systems with TLA+,” Proceedings of the ACM SIGOPS 10th workshop,
2002, pp. 45–48, DOI:https://doi.org/10.1145/1133373.1133382.

[7] Kanner A. M., Kanner T. M., “Modeling and verification of the access
control subsystem of Accord-X data security tool,” Information Security
Questions, vol. 3(130), 2020, pp. 6-10

[8] Kanner A. M., Kanner T. M., “Verification of a Model of the Isolated
Program Environment of Subjects Using the Lamports Temporal Logic
of Actions,” Proceedings of the VII Engineering & Telecommunication
Conference, 2021, in press.

[9] H. Wayne, “Practical TLA+: Planning Driven Development,” Apress,
2018, DOI: http://doi.org/10.1007/978-1-4842-3829-5.

[10] L. Lamport, S. Merz, “Auxiliary variables in TLA+,” arxiv.org
preprint:1703.05121, 2017, URL: https://arxiv.org/pdf/1703.05121.pdf.


