
Testing Software and Hardware Data Security Tools
Using the Automata Theory and the Graph Theory

1st Tatiana M. Kanner
National Research Nuclear University MEPhI

Moscow, Russia
sheikot@mail.ru

2nd Andrey M. Kanner
National Research Nuclear University MEPhI

Moscow, Russia
kanner@mail.ru

Abstract—The article focuses on the application of existing
provisions of the automata and graph theories to solving the
problem of testing software and hardware data security tools
(DST). The software and hardware DST, unlike software ones,
include hardware components that implement key security func-
tions, while preventing from using a number of testing methods
and tools. In addition to the possibility of applying a particular
known testing method or tool to software and hardware DST,
what remains acute is the problem of ensuring completeness and
optimality of such testing. The developers of various DST do
not often have a clear understanding of when they can stop
testing and whether the test results allow them to talk about its
completeness. Accordingly, testing of DST is often spontaneous,
and the developer does not understand whether all the security
functions have been tested, whether all the states and all possible
sets of parameters have been tested, and whether testing is being
carried out in the optimal way. To eliminate these shortcomings,
the authors of the article propose to use a mathematical approach
based on the theories of automata and graphs to solve the
problem of testing software and hardware DST, which can be also
used for other software and hardware, as well as software tools
and systems. Applying this approach in practice, it is possible
to confirm or reject the possibility of ensuring completeness of
testing a specific data security tool, as well as identifying specific
measures to ensure completeness and optimality of testing.

Index Terms—software and hardware data security tools,
access control subsystem, completeness and optimality of testing,
finite deterministic automaton, directed graphs, Eulerian path,
Chinese Postman Problem

I. INTRODUCTION

Some works [1]–[5] have already considered testing of
various software or software-hardware tools, including data
security tools, from the point of view of using some math-
ematical apparatus. In such works, the automata theory is
mainly used to describe a particular software or software-
hardware complex, while the behavior of the complex is
modeled by automata transitions and obtaining output values.
So, for example, in the previous work [5], the author developed
a descriptive and then a formal model of an arbitrary software
and hardware data security tool (DST), and then formed the
relevant necessary and sufficient conditions for the testing
possibility in principle. However, the results of this work
did not provide for a clear method for further testing of
software and hardware DST, but only justified the possibility
or impossibility of such testing.

The real problem of testing the software and hardware DST
is to ensure that all possible security functions are tested in the
required set of automaton states corresponding to this security
tool, and, if possible, while ensuring the minimum number
of actions to be performed. This means that in addition to the
possibility of testing, it is necessary to ensure its completeness
and optimality. To solve this problem, let us introduce the
necessary denotations and definitions.

Let us introduce an arbitrary m ∈M , where M is a finite set
of all software and hardware DST. We will further consider m
as a general case of a software and hardware DST, for which
we will formulate the corresponding definitions and assertions.

Let us denote V = {v0, v1, . . . , vn}, n ∈ N as a finite set
of states in which m ∈ M can exist (various combinations
of states of software and hardware components). In this case
v0 ∈ V is the initial state, for example, when the software
component is not installed and/or a hardware component is
not initialized.

Let us denote I = Isf∪Inf as a set of functions of m ∈M ,
which can be performed in states vj ∈ V , j = 0, . . . , n and
are either security functions with formal parameters (Isf) or
non-target functions of the software and hardware DST (Inf).
Isf ∩ Inf = ∅.

In the general case, for any m ∈ M , the performance of
the security function i ∈ Isf should be verified in one or
several states from V . If several parameters are tested for a
specific security function, the V set should include the states
corresponding to all possible combinations of parameters for
the given security function. Thus, testing will consist in
traversing the states of the software and hardware DST without
the need to revisit the same state to test various parameters of
any security function.

In addition, it should be borne in mind that some security
functions of the software and hardware DST may be performed
only in certain states of the software and/or hardware compo-
nents of the security tool. Let us denote vj ∈ V , j = 0, . . . , n
as a state with potentially computable security functions, if
∃isf1

, . . . , isfk
∈ Isf , k ∈ N, which should be tested in

state vj in accordance with V arrangement. Let us denote
Vsf ⊆ V as a set of all states with potentially computable
security functions.

Let us define a fixed abstract software and hardware DST
representing it in the form of a finite determinate automaton

m = (V, v0, Vsf , I, O, T), where:
• V , v0, Vsf and I correspond to the previously introduced

designations and definitions;
• V is a set of the automaton’s states, v0 is the initial

state of the automaton, Vsf is a set of all the states with
potentially computable security functions;

• I is a set of stimuli (inputs) of the automaton;
• O is a set of reactions (outputs), that is, the results of

applying the stimuli in the automaton’s states;
• T ⊆ V ×I×O×V is a set of the automaton’s transitions;

at each transition (v, i, o, v′), where v 6= v′, from state
v in case of applying stimulus i with reaction o, the
automaton transits to state v′.

The problem of testing the software and hardware DST
is to traverse the automaton’s (V, v0, Vsf , I, O, T) states by
applying stimuli, where:
• To ensure completeness of testing, it is necessary to

transit to each state vj ∈ Vsf , j ≤ n using the maximum
possible number of stimuli i ∈ I (with various sets of
parameters and input conditions, that is, from various
states of the software and hardware DST);

• To ensure optimality of testing, it is necessary to imple-
ment the minimum number of the automaton’s transitions
(v, i, o, v′).

We will say that the testing problem has been solved for the
software and hardware DST m = (V, v0, Vsf , I, O, T) ∈ M ,
when completeness and optimality conditions are met simul-
taneously (hereinafter T ′ ⊆ T will mean a set of all the
transitions made during testing):

∀v′ ∈ Vsf : ∃(v, i, o, v′) ∈ T ′ (1)

∑
v∈V

v′∈Vsf

(v, i, o, v′)→ max, (v, i, o, v′) ∈ T ′ (2)

|T ′| → min (3)

II. MATERIALS AND METHODS

To solve the testing problem and verify (1)–(3), we can
use the existing provisions of the graph theory [6]–[9] by
presenting an automaton corresponding to a fixed software and
hardware DST in the form of a graph [4].

Let us denote Gm = (V,E) as a directed loop-free graph
without multiple edges (a simple digraph) corresponding to the
software and hardware DST m ∈ M represented in the form
of a finite deterministic automaton m = (V, v0, Vsf , I, O, T),
where:
• V is a set of the graph nodes corresponding to the

automaton’s states;
• E ⊆ V × V is a set of the graph’s directed edges, that

is the transitions (v, i, o, v′) ∈ T not taking into account
the stimuli and reactions of the automaton.

Such representation of m ∈M in the form of a graph does
not allow to include some details of the automaton’s m =

(V, v0, Vsf , I, O, T) operation, namely stimuli and reactions.
Let us further assume that for the above-defined graph Gm =
(V,E) the necessary and sufficient conditions for testing are
fulfilled [5], meaning that the set of edges E contains only
those transitions that are computable.

Equations (1) and (2) allow us to conclude that the traversal
of graph Gm = (V,E) should be performed mainly by the
edges from set Vsf ⊆ V , and not generally by the whole set
of edges V . That is why instead of graph Gm = (V,E) we
will consider a derived graph G′m, which will be constructed
by removing some nodes and edges that are not used in solving
the testing problem.

Let us denote G′m = (V ′, E′) as a graph derived from Gm

by deleting nodes v /∈ Vsf ∪ {v0} ⊆ V and some edges from
E in accordance with the following rules:

• ∀v′, v′′ ∈ V \ {v}: (v, v′′) ∈ E and (v′, v) ∈ E – it is
necessary to add new edges (v′, v′′) : v′ 6= v′′ to E and
at the end – to delete v from V and all edges (v, v′′) and
(v′, v) from E for which new edges were constructed;

• ∀v′ ∈ V \ {v}: (v′, v) ∈ E and @v′′ ∈ V \ {v}: (v, v′′) ∈
E – it is necessary to delete all the edges (v′, v) from E
and at the end – to delete v from V ;

• If @v′ ∈ V \ {v}: (v, v′) ∈ E or (v′, v) ∈ E – it is
necessary to delete v from V ;

• ∀v′ ∈ V \Vsf : (v, v′) ∈ E and @v′′ ∈ V \ {v}: (v′′, v) ∈
E – it is necessary to delete all the edges (v, v′) from E,
if at the end @v′′′ ∈ Vsf : (v, v′′′) ∈ E – delete v from
V .

Let us justify that graph G′m = (V ′, E′) is equivalent
to graph Gm = (V,E) in terms of solving the testing
problem under (1)–(3). According to our denotation of G′m,
the following nodes and edges are not deleted from the initial
graph Gm:

• v0;
• nodes with potentially computable security features;
• edges to nodes with potentially computable security

functions (in the first rule, such edges can be replaced
by similar ones without participation of an intermediate
deleted node).

In this connection, if (1)–(2) are fulfilled for graph Gm,
they will be also fulfilled for graph G′m (and vice versa), since
edges to nodes with potentially computable security functions
are not deleted from Gm, and respectively, their sum will not
change. Fulfillment of (3) is not prevented, since if the set of
transitions for Gm is minimal, it will be minimal for G′m and
vice versa. Thus, the solution to the testing problem in terms
of fulfilling (1)–(3) for graph G′m will be a solution to the
testing problem for Gm as well.

Let us consider the testing problem from the point of view
of the known provisions of the graph theory. Equations (1)–
(3) consist in finding a path passing through all the edges of
graph G′m at least once for a minimum number of transitions.
Thus, in accordance with [7], [10], [11], the testing problem
is reduced either to the problem of finding the Eulerian path,

or to the Chinese Postman Problem, also known as the Route
Inspection Problem.

The Eulerian path is the optimal solution to this problem,
since each edge is traversed only once. The Eulerian path in
graph G′m exists if and only if [7], [10]:

1) G′m is strongly connected [6]–[9];
2) there are two nodes v′, v′′ ∈ V ′: their in-degrees and

out-degrees [10] satisfy the following conditions:
• indeg(v′) = outdeg(v′) + 1;
• indeg(v′′) = outdeg(v′′)− 1.

3) The following is fulfilled for all other nodes: ∀v ∈ V ′ \
{v′, v′′}: indeg(v) = outdeg(v).

To search for the Eulerian path, one can use, for example,
a cycle-based algorithm (Hierholzer’s algorithm) [10], whose
complexity is O(|E′|). Verification of the conditions for the
existence of the Eulerian path initially consists in verifying
the graph’s strong connectivity, for example, using the adapted
Kosaraju-Sharir’s algorithm, whose complexity for two depth-
first search traversals is O(|V ′|+ |E′|) as in [6]–[9], [12]. The
in-degrees and out-degrees for each node can be also found in
O(|V ′| + |E′|). That is, the total complexity of checking the
existence and finding the Euleraian path is O(|V ′|+ |E′|).

However, as a rule, the graph of some software and hard-
ware DST will not contain the Eulerain path, therefore, in
most cases, it is not possible to use such an efficient algorithm
in practice. If there is no Eulerian path in the graph, the
problem is reduced to the Chinese Postman Problem, in which
the number of the graph’s edges with repeated traversals is
minimized. This problem may be also solved only if the graph
is strongly connected. The difficulty of finding the optimal path
is O(|V ′|2 × |E′|) for a polynomial time [10], [11].

Thus, the solution to the testing problem, which consists
in finding a complete and optimal path through the nodes of
the directed graph, will exist if and only if G′m is a strongly
connected graph. Moreover, for a strongly connected graph,
this problem can be solved for a polynomial time, that is, it
belongs to the class of problems P , and not NP [6], [8].

III. RESULTS AND DISCUSSION

The article proposes an approach to verifying fulfillment of
the testing problem for software and hardware DST using the
provisions of the automata and graph theories. In accordance
with this approach, it is impossible to solve this problem for
some software and hardware data security tools (the graph is
not connected); for the remaining DST the problem may be
solved in the worst case for a polynomial time using well-
known graph algorithms.

It should be also noted that the testing problem can be
changed and include negative testing, that is, verifying “non-
fulfillment” of security functions in states V \ Vsf . The ap-
proaches and algorithms used to solve such a testing problem
are completely similar, except for the necessity to apply
them to the whole graph Gm, and not to the derived graph
G′m obtained after deleting some nodes and edges that are
unnecessary for the initial problem.

Fig. 1. Graph Gacx, where v0, . . . v12 are the states with potentially
computable security functions, unlabeled states are unnecessary for the testing
problem.

Applying the proposed approach in practice allowed the
authors to eliminate the shortcomings of the process and of
the test results of the developed access control subsystem
“Accord-X”, which is built on the basis of Accord-TSHM
trusted start-up hardware module [13]. Using this approach,
transition graphs corresponding to the considered DST were
obtained, which are shown in Fig. 1–3.

One of the optimal traversal for the resulting graph is shown
in Fig. 4.

The obtained graph and its optimal traversal allowed to
ensure the completeness of testing of this data security tool,

Fig. 2. Graph G′
acx – not Eulerian graph (for v1 there are 7 more incoming

edges than outgoing), but strongly connected.

Fig. 3. Graph G′
acx, there are corresponding values of outdeg(v)−indeg(v)

inside the nodes, optimal duplicate-edges must be added for all imbalanced
nodes with nonzero value in order to reduce the graph to Eulerian.

Fig. 4. One of the optimal traversal for G′
acx, for edges labeled with the

number of repeated passes virtual duplicate-edges were constructed to process
the algorithm.

which could not be provided earlier due to some transition’s
omission.

REFERENCES

[1] B. Beizer, Software testing techniques, 2nd ed., Dreamtech, 2003.
[2] M. Broy, B. Jonsson, J. P. Katoen, M. Leucker, A. Pretschner, Model

based testing of reactive systems, LNCS 3472, Springer Berlin Heidel-
berg, 2005.

[3] V. V. Kulyamin, “Model-based testing. Lecture course in VMiK Moscow
State University”, http://panda.ispras.ru/ kuliamin/mbt-course.html (in
Russian).

[4] I. B. Burdonov, A. S. Kossatchev, and V. V. Kulyamin, “Application
of finite automatons for program testing”, Programming and Computer
Software, Springer, vol. 26 (2), 2000, pp. 61–73.

[5] T. M. Kanner, “Applicability of software testing methods to software
and hardware data security tools”, in Glob. J. Pure Appl. Math., vol.
12(1), 2016, pp. 167–190.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, & C. Stein, Introduction
to algorithms, 3rd ed., MIT press, 2009.

[7] R. Sedgewick, Algorithms in C. Part 5: Graph algorithms, 3rd ed.,
Addison-Wesley Professional, 2001.

[8] R. Sedgewick, K. Wayne, Algorithms, 4th ed., Addison-Wesley Profes-
sional, 2011.

[9] T. Roughgarden, Algorithms illuminated. Part 2: Graph algorithms and
data structures, Soundlikeyourself Publishing, 2018.

[10] S. S. Skiena, The Algorithm design manual, 2nd ed., Springer, 2010.
[11] J. Edmonds, E. L. Johnson, “Matching Euler tours and the chinese

postman”, Mathematical programming, vol. 5(1), 1973, pp. 88–124.
[12] M. Sharir, “A strong connectivity algorithm and its applications to data

flow analysis”, Computers and Mathematics with Applications, vol. 7(1),
1981, pp. 67–72.

[13] A. M. Kanner, L. M. Ukhlinov, “Access control in GNU/Linux”, Inf.
Secur. Quest., vol. 3, 2012, pp. 35–38 (in Russian).

